Interpreting Macroinvertebrate Data: A New Perspective

Jason York

Different Sweeps for Different Peeps

- North Carolina: Full Scale and Qual 4. Field picking.
- Maryland: 20 Jabs proportional to available habitat. Laboratory sub-sampling.
- **Virginia:** Single Habitat. Laboratory sub-sampling. Macroinvertebrate monitoring required for stream restoration projects.
- **Tennessee:** Semi-Quantitative Single Habitat Sample (SQSH) determined by ecoregion. Macroinvertebrate monitoring as part of the Stream Quantification Tool (SQT) as a proxy for physicochemical data.
- South Carolina: Timed- Qualitative Multiple Habitat Sampling Protocol (MHSP)

• Name that Trait or Habit

Clinger

Burrower

Swimmer

Predator

• Name that trait or habit continued...

Grazer

Shredder

T-Rex

Scraper

Filter feeder

EPA Metrics

• Table 7-1. Definitions of best candidate benthic metrics and predicted direction of metric response to increasing perturbation (compiled from <u>DeShon 1995</u>, <u>Barbour et al. 1996</u>b, <u>Fore et al. 1996</u>, <u>Smith and Voshell 1997</u>).

Category	Metric	Definition	Predicted response to increasing perturbation
Richness measures	Total No. taxa	Measures the overall variety of the macroinvertebrate assemblage	Decrease
	No. EPT taxa	Number of taxa in the insect orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies)	Decrease
	No. Ephemeroptera Taxa	Number of mayfly taxa (usually genus or species level)	Decrease
	No. Plecoptera Taxa	Number of stonefly taxa (usually genus of species level)	Decrease
	No. Trichoptera Taxa	Number of caddisfly taxa (usually genus or species level)	Decrease
Composition measures	% EPT	Percent of the composite of mayfly, stonefly, and caddisfly larvae	Decrease
	% Ephemeroptera	Percent of mayfly nymphs	Decrease
Tolerance/Intolerance measures	No. of Intolerant Taxa	Taxa richness of those organisms considered to be sensitive to perturbation	Decrease
	% Tolerant Organisms	Percent of macrobenthos considered to be tolerant of various types of perturbation	Increase
	% Dominant Taxon	Measures the dominance of the single most abundant taxon. Can be calculated as dominant 2, 3, 4, or 5 taxa.	Increase
Feeding measures	% Filterers	Percent of the macrobenthos that filter FPOM from either the water column or sediment	Variable
	% Grazers and Scrapers	Percent of the macrobenthos that scrape or graze upon periphyton	Decrease
Habit measures	Number of Clinger Taxa	Number of taxa of insects	Decrease
	% Clingers	Percent of insects having fixed retreats or adaptations for attachment to surfaces in flowing water.	Decrease

Other Potential Metrics:

Table 7–2. Definitions of additional potential benthic metrics and predicted direction of metric response to increasing perturbation.

Category	Metric	Definition	Predicted response to increasing perturbation	References
Richness measures	No. Pteronarcys species	The presence or absence of a long-lived stonefly genus (2-3 year life cycle)	Decrease	Fore et al. 1996
	No. Diptera taxa	Number of "true" fly taxa, which includes midges	Decrease	DeShon 1995
	No. Chironomidae taxa	Number of taxa of chironomid (midge) larvae	Decrease	Hayslip 1993, Barbour et al. 1996b
Composition measures	% Plecoptera	Percent of stonefly nymphs	Decrease	Barbour et al. 1994
	% Trichoptera	Percent of caddisfly larvae	Decrease	DeShon 1995
	% Diptera	Percent of all "true" fly larvae	Increase	Barbour et al. 1996b
	% Chironomidae	Percent of midge larvae	Increase	Barbour et al. 1994
	% Tribe Tanytarsini	Percent of Tanytarisinid midges to total fauna	Decrease	DeShon 1995
	% Other Diptera and noninsect	s Composite of those organisms generally considered to be tolerant to a wide range of environmental conditions	Increase	DeShon 1995
	% Corbicula	Percent of asiatic clam in the benthic assemblage	Increase	Kerans and Karr 1994
	% Oligochaeta	Percent of aquatic worms	Variable	Kerans and Karr 1994
Tolerance/Intolerance measures	No. Intol. Snail and Mussel species	Number of species of molluscs generally thought to be pollution intolerant	Decrease	Kerans and Karr 1994
	% Sediment Tolerant organism:	s Percent of infaunal macrobenthos tolerant of perturbation	Increase	Fore et al. 1996
	Hilsenhoff Biotic Index	Uses tolerance values to weight abundance in an estimate of overall pollution. Originally designed to evaluate organic pollution	Increase	Barbour et al. 1992, Havslip 1993, Kerans and Karr 1994
	Florida Index	Weighted sum of intolerant taxa, which are classed as 1 (least tolerant) or 2 (intolerant). Florida Index = 2 X Class 1 taxa + Class 2 taxa	Decrease	Barbour et al. 1996b
	% Hydropsychidae to Trichoptera	Relative abundance of pollution tolerant caddisflies (metric could also be regarded as a composition measure)	Increase	Barbour et al. 1992, Havslip 1993
Feeding measures	% Omnivores and Scavengers	Percent of generalists in feeding strategies	Increase	Kerans and Karr 1994
	% Ind. Gatherers and Filterers	Percent of collector feeders of CPOM and FPOM	Variable	Kerans and Karr 1994
	% Gatherers	Percent of the macrobenthos that "gather"	Variable	Barbour et al. 1996b
	% Predators	Percent of the predator functional feeding group. Can be made restrictive to exclude omnivores	Variable	Kerans and Karr 1994
	% Shredders	Percent of the macrobenthos that "shreds" leaf litter	Decrease	Barbour et al. 1992, Hayslip 1993
Life cycle measures	% Multivoltine	Percent of organisms having short (several per year) life cycle	Increase	Barbour et al. 1994
	% Univoltine	Percent of organisms relatively long-lived (life cycles of 1 or more years)	Decrease	Barbour et al. 1994

•

The River Continuum Concept

WATER ON THE WEB Developed by: Merrick, Richards

Updated: August 2003

U1-m4-s16

Southeastern/Mid-Atlantic Macroinvertebrate Metrics

North Carolina (Lowest Practical Taxonomic Level): North Carolina Biotic Index, Taxa Richness, EPT Taxa Richness, Sensitive Taxa – Tolerance Value ≤ 2.5 (or other predetermined value), Bioclassification – Excellent, Good, Good-Fair, Fair, Poor

South Carolina: Biotic Index, EPT index – if sample size is < 100 organisms, Bioclassification – Excellent, Good, Good-Fair, Fair, Poor

Virginia: Virginia Stream Conditions Index – Non-coastal Streams: Taxa Richness, Taxonomic composition, Functional Feeding Group, Habitat, Degree of Tolerance, Tolerance Value

Tennessee (Genus Level ID): Tennessee Macroinvertebrate Index (TMI):Taxa Richness, EPT Richness, % EPT – Cheum, % OC, NCBI, % Clinger – Cheum, % Tnutol = ((Total number of Cheumatopsyche, Stenelmis, Polypedilum, Cricotopus, Cricotopus/Orthocladius, Lirceus, Caenis, Gastropoda, Oligochaeta) / Total N) * 100

Georgia: Coastal plain headwater stream restoration index (CP-HStR): Genus taxa richness, Proportion genus EPT taxa richness, Proportion genus collector-filterer taxa richness, Proportion genus clinger taxa richness, Proportion genus swimmer taxa richness, Proportion genus shredder taxa richness (Somerville & Pond, 2022).

Maryland (Genus Level ID): Benthic Index of Biotic Integrity (BIBI), chironomid counts

from

Evan, R.R., A. Seager, G.C.L. David. 2021. Overview of benthic macroinvertebrates in freshwater streams. U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire. White Pater, 64 pages.

In general, there are a few metrics that are standard between most state water quality monitoring programs, which are based on the concept of indicator organisms:

- % EPT (percentage of Ephemeroptera, Plecoptera, and Trichoptera taxa, or mayfly nymphs, stonefly nymphs, and caddisfly larvae)
 - % EPT is total number of EPT individuals in a sample divided by the total number of all macroinvertebrates found in the sample, then multiplied by 100 to get the percentage. The higher the percentage the better the water quality, for example
- % Ephemeroptera (percentage of mayfly nymphs)
- % Chironomidae (percentage of chironomid midge larvae (Diptera))
- % Clingers (percentage of benthic macroinvertebrates considered to use a clinging habit: see Section 3.1)

Observed Vs Expected Ratios: Pre-Construction and Reference Reach Data

Site Data										
	Collection Date	Total #I	NCBI (Semi- Quantitative)	Taxa Richness	EPT Richness	%Intol	%CN - Cheum	%EPT - Cheum	%OC	%Tnutol
R1 Upstream	5/6/2021	69	4.41	14	8	17.39	34.78	59.42	23.19	14.49
R1 Downstream	5/6/2021	68	4.61	22	11	17.65	41.18	50	26.47	17.65
UT3	5/6/2021	72	3.56	21	10	34.72	36.11	56.94	8.33	5.56
Reference Reach	6/8/2021	174	4.00	28	18	18.97	51.15	63.22	5.75	14.94
			Observed / E	xpected Ratios						
	Total #I	NCBI (Semi- Quantitative)	Taxa Richness	EPT Richness	%Intol	%CN - Cheum	%EPT - Cheum	%OC	%Tnutol	
R1 Upstream	0.40	1.10	0.50	0.44	0.92	0.68	0.94	4.03	0.97	
R1 Downstream	0.39	1.15	0.79	0.61	0.93	0.81	0.79	4.60	1.18	
UT3	0.41	0.89	0.75	0.56	1.83	0.71	0.90	1.45	0.37	
Reference Reach	1	1	1	1	1	1	1	1	1	
Site O/E Means	0.40	1.05	0.68	0.54	1.23	0.73	0.88	3.36	0.84	

Add more states

C/Uses/jeen.yo	WOneDrive - Michael Baker Internation	al/Desktop/EanthicReporting	Updated/BenthicReportingApp	- Shiny					- 0 X
mariy21041583	C Open in Browner 1 (1)								S Abort +
Outly Entry	Reporting								
New Report		import							
Site Informat	ion								
Site Name		Latitude	Longitude	Date	 Report Type	Tolerance Data Set	Intolerance	II/ Use Seni-Quantitative NCBI	
Sibe Name		0	0	2022-06-26	# NC 0 TN	WINC SOP	2		
Taxa Input									
Order		Family		Genus	Species				
						5 * .			
-							NOBI		SpecimentCount
									0
						Notes			
						ANALYSIC.			
		e minutaits"				2			
Add Observab	C43	1							
Export									

C/Users/jason.york/OneDrive - Michael Baker International/Desktop/BenthicReportingUpdated/BenthicReportingApp - Shiny

Mass/107.00110352 0per in Browser

- 0 ×

S Rolin +

Clata Entry	Reporting
Current Report	Plots

	FINALID	GENUS	SPECIES	TOLERANCE	# of Individuals (#I)	intolerant(0.0-3.0)	EPT	Oligochaeta/Chironomid (OC)
1	Plauditurs spp.	Plauditus	spp	4	10	D	τ	0
2	Maccaffertium modestum	Maccaffertium	modestum	5.7	3	0	.3.	0
3	Baetis intercalaris	Baetis	intercalaris	5	3	0	÷.	.0
4	Baetis flavistriga	Baetts	Ravistriga	5.8	3	Ω.		0
5	Baetis pluto	Baetin	pluto	3.4	10	0	1	0
6	Perlesta spp.	Perlesta	spp	2.9	10	10		0
$T^{(i)}$	Hydropsyche (H.) betteni	Hydropsyche	(H.) betterii	7.9	1	0	1	0
8	Labkobaeths propinquus	Labiobaetts	propinguos	5.8	1	0	1	0
9	Lanthus spp.	Lanthus	spp	1.6	1	10	0	σ
10	Elixa spp.	Dixa	80p	2.5	1	ż.	0	0
			oldu -					Previous 1 2 Next

Vew/Edit Notes & Observation

	Total #I	NCBI (Semi- Guantitative)	Taxa Richness	EP T Richness	Suintoi (%EPT-	soc	% Thutol	
1	69	4.21	14	8	17.39	59.42	23.19	14.49	

0

Multivariate analysis

Cknger Non-Cinger

AQUATIC INSECT ECOLOGY FOR ENVIRONMENTAL PROFESSIONALS – LEVEL 2 Michael Baker Intl. and Penrose Environmental September 12-15, 2022

References and Acknowledgments

- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water; Washington, D.C.
- Evan, R.R., A. Seager, G.C.L. David. 2021. Overview of benthic macroinvertebrates in freshwater streams. U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire. White Pater, 64 pages.
- Somerville, D. Eric, Pond, Gregory J. 2022. The coastal plain headwater stream restoration (CP-HStR) index: a macroinvertebrate index for assessing the biological effectiveness of stream restoration in the Georgia coastal plain, USA. Environmental Monitoring and Assessment (2022) 194:319. <u>https://doi.org/10.1007/s10661-022-09987-6</u>

