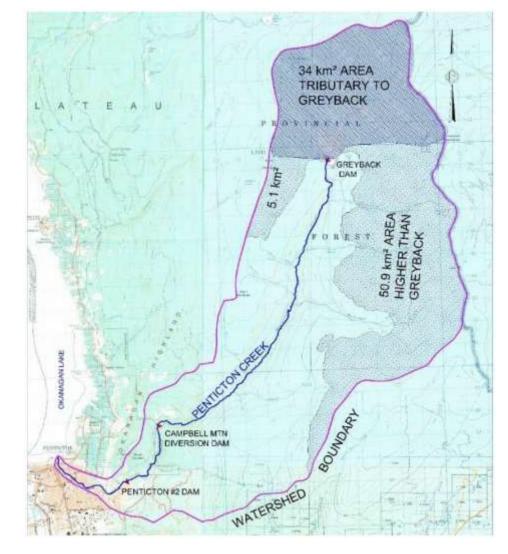


Using a scaled model to assess the performance of the Penticton Creek restoration project, British Columbia


Elli Papangelakis¹, Leif Burge², David Luzi², Marwan Hassan³, Lukas Mueller⁴, Taylor Kenyon⁴, Bruce MacVicar⁴


¹School of Earth, Environment & Society, McMaster University, Hamilton, Ontario, Canada

²Stantec, Burnaby, British Columbia, Canada

³Department of Geography, the University of British Columbia, Vancouver, British Columbia, Canada ⁴Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada

Penticton Creek, British Columbia

Penticton Creek History

- Flooding in 1942 and 1948 caused significant issues for the city
- Creek was channelized and concrete lining installed
- Narrowing from ~ 16 m to ~ 6 m wide at bankfull

Construction of the channel lining (date unknown) City of Penticton (2017)

The Penticton Creek Restoration Project

- Penticton Creek Master plan in 2017
- 13 different reaches to be designed and restored
- Showcase section was built in 2015

PENTICTON CREEK: WE HAVE A PLAN

Restore flood protection. Restore fish habitat. Good design lets us do both.

City of Penticton (2017)

Reach 3A (upper) and 3B

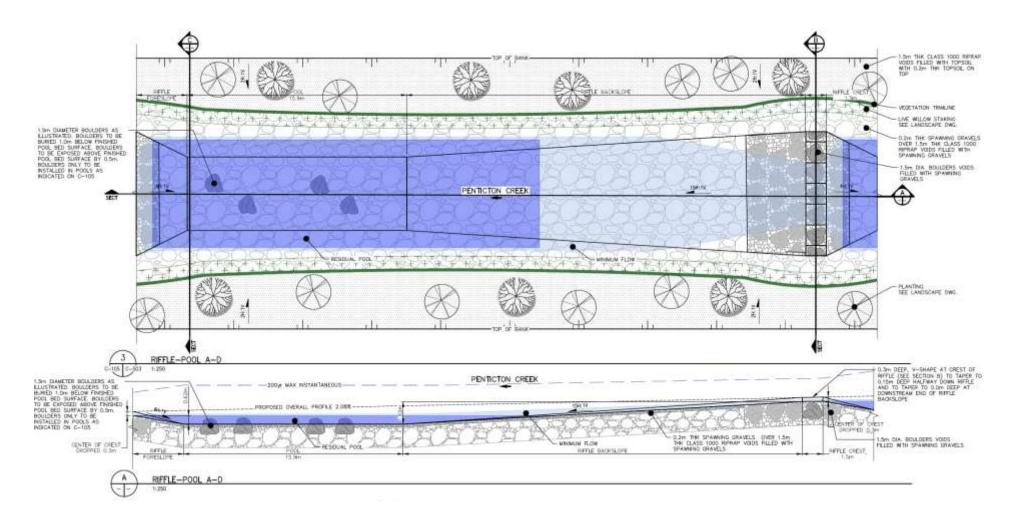
Restoration purpose: stabilize channel with natural materials to mitigate flooding and improve fish habitat and restore fish passage

Specific Objectives

- Remove existing concrete, rubble, and curbs
- Remove existing structure and fish ladder
- Re-grade channel to contain 200-year design flow
- Provide resiliency from erosion up to 200-year design flow
- Include hydraulic controls and channel features to improve fish passage, habitat, and spawning
- Include vegetation for fish habitat and aesthetic benefits

Design Flow	Discharge	
	[m ³ /s]	
Minimum channel Flow	0.23	
200-year Maximum Daily Design Q	48	
200-year Instantaneous Maximum Design Q	60	

Design



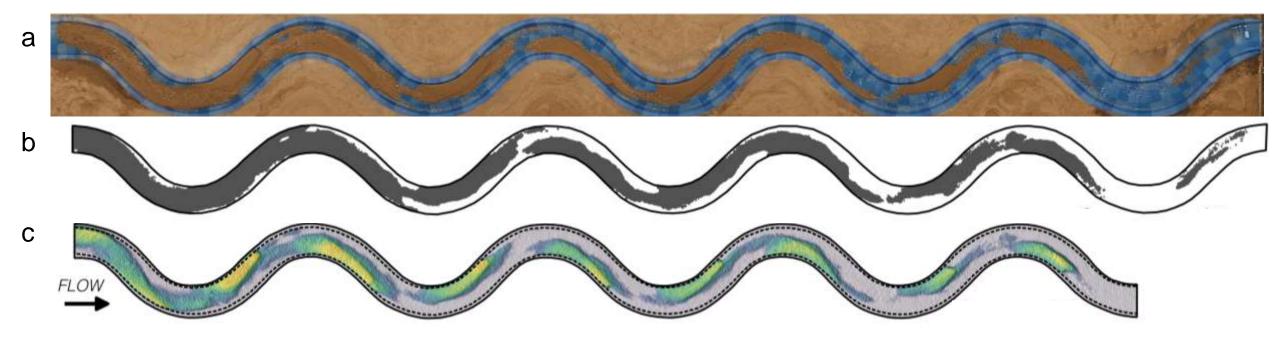
Lower section Series of 5 riffle-pool sequences at 2.1%

Deep Pool **Upper section** Series of 6 steep steppool structures at 3.6%

Design

- Based on 1-D and 2-D models
- Designed to meet flooding, erosion, and fish habitat needs

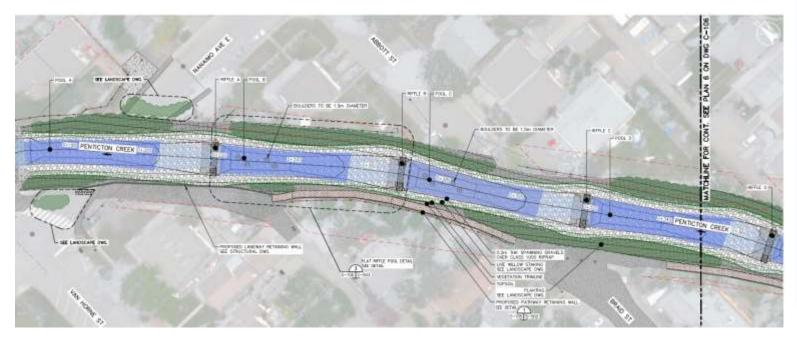
Flume Experiments


- Popular tools for research into river hydraulics and sediment transport
- Allow for many variables to be controlled very precisely (flow, sediment feed rate, topography)
- Many types and sizes of flumes (e.g. stream tables, recirculating, flow-through)

Flume Experiments

Can measure:

- Sediment transport and storage rates
- Evolution of channel morphology (in 3D)
- Small-scale hydraulic structures
- Effects of vegetation


Froude Scaling

- Set of scaling relationships meant to preserve fluid forces (Froude number, shear stress, shear velocity)
- Reynolds numbers can differ from full-scale

Parameter	Units	Scaling Factor
Length	m	λ^1
Density	kg/m ³	λ^{0}
Mass	kg	λ^3
Pressure (including τ)	N/m ²	λ^1
Velocity	m/s	λ ^{0.5}
Time	S	λ ^{0.5}

Model Scaling at 1:30

	Length	Bed Slope	Avg. Bed Width	Riff. Spacing	Pool Depth
	[m]	%	[m]	[m]	[m]
Penticton	141.3	2.1	9.0	50	0.62
Model	4.71	2.1	0.3	1.667	0.021

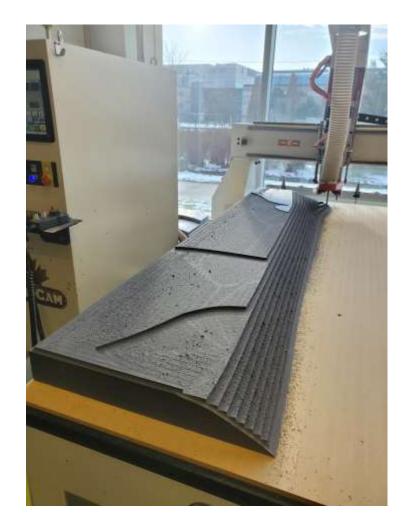
Return	Penticton Q	Model Q _m
[yrs]	[m ³ /s]	[l/s]
2	11	2.23
5	18	3.65
10	22	4.46
20	26	5.27
50	32	6.49
100	36	7.30
200	40	8.11
200+cc	48	9.74
200 MI	60	12.03

	Penticton	Model	
	[m]	[mm]	
Riffle	s 1.5	50	
Roughnes	s 4.71	2.1	
Spawning	g 0.2	6.7	

Model Construction

Materials & Costs

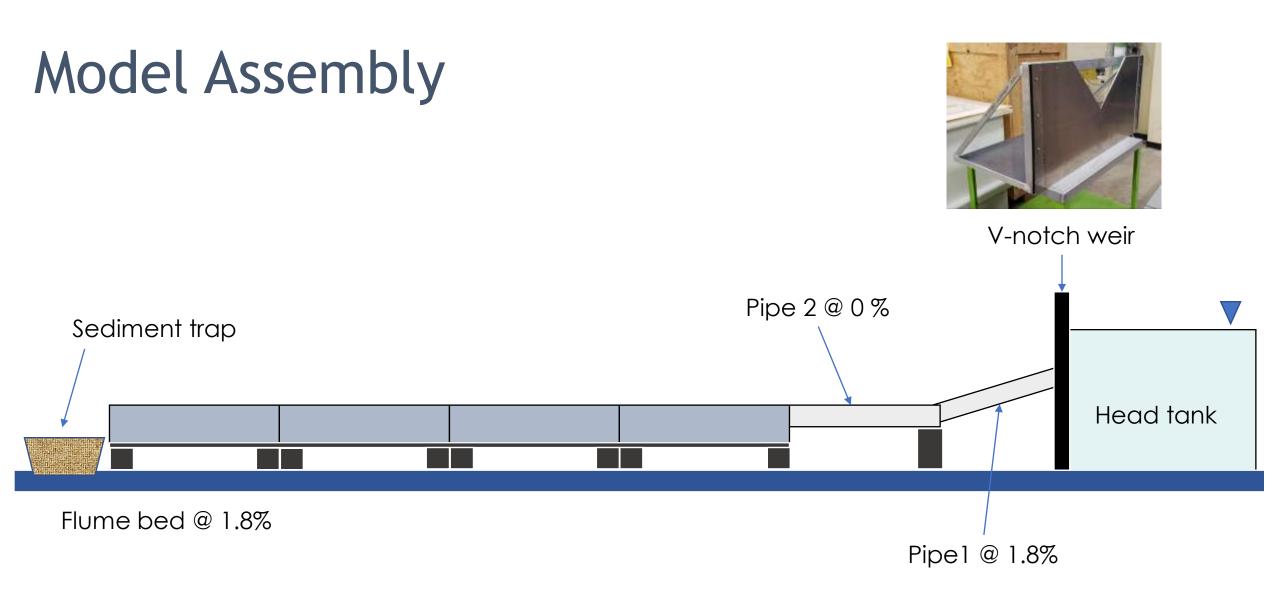
Item	Unit Cost [CAD]	Total Cost [CAD]
Foam Boards (XPS Insulation Boards)	56.44	959.54
CNC Machine Time	30/hr	840
Misc. Items (silicone sealant, construction adhesive)	-	200
Stones for roughness	9.39	75.12
		2,074.7



Model Construction

CNC Machining

• Total time: 3 days



Model Construction

Final Model

Next Steps

- Run the experiments!
- Run different Q scenarios
- Monitor spawning gravel movement and evacuation

Final Thoughts

Benefits of using scaled models of restoration projects:

- Low-cost and quick using new construction methods (e.g. CNC machining, 3D printing)
- Ability to test the performance of designs under extreme events
- Ability to validate hydraulic models at high flows
- Test novel designs and unanswered questions

Benefits of industry-academic partnerships:

- Shared cost
- Test designs risk-free
- Model validation
- Student training

Stantec

Questions?

