

Lidar and Geomorphic Change Detection: Useful Tools for River Ecosystem Assessment and Restoration Monitoring

Geosyntec^D

Robert M Dunn | 08.01.2022

Outline

- River survey methods
 - Traditional methods
 - "New" technologies
- LiDAR's role
- Advantages and disadvantages

eosyntec

consultants

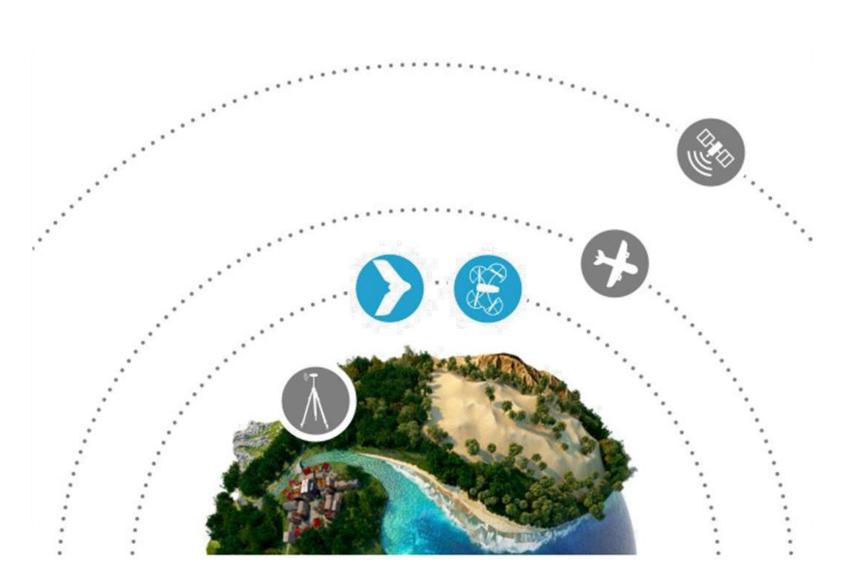
Applications of LiDAR

Introduction

- Traditional survey methods have long been the preferred method for assessment and monitoring
- Limited spatially to reach-scale cross-sections and longitudinal profiles
- Time consuming

The "New" Kids on the Block

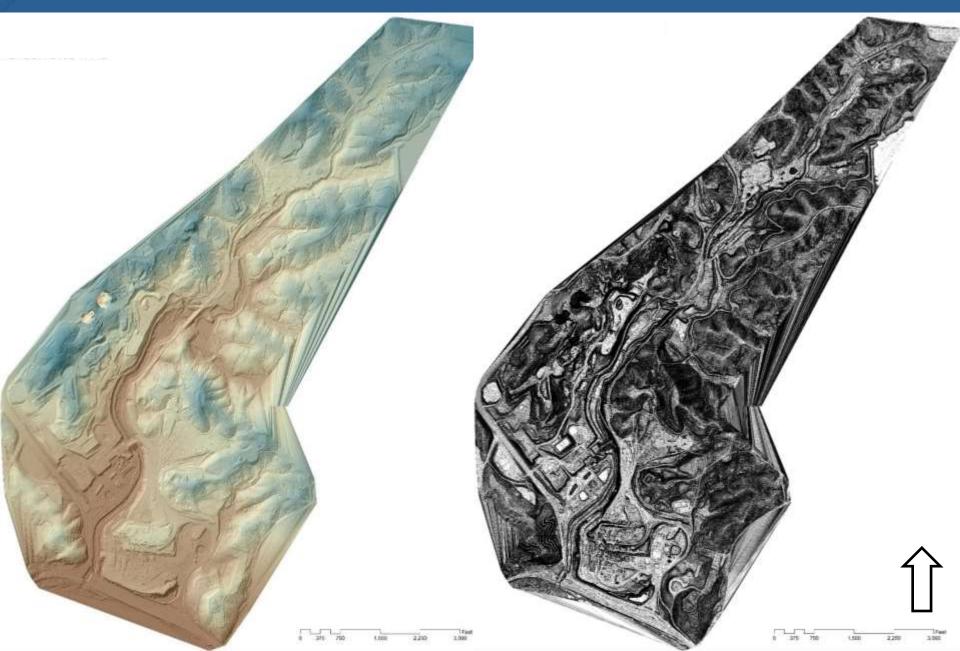
- Newer methods (UAVs, ground-based Lidar, surveygrade RTK GPS, etc) are increasingly becoming more common in river ecosystem assessment and restoration monitoring.
- UAVs equipped with high-resolution Lidar scanners offer a suite of benefits for river restoration practitioners
 - Increased spatial coverage and data density
 - Collect topographic and geomorphic data beyond the traditional reach-scale, with less time

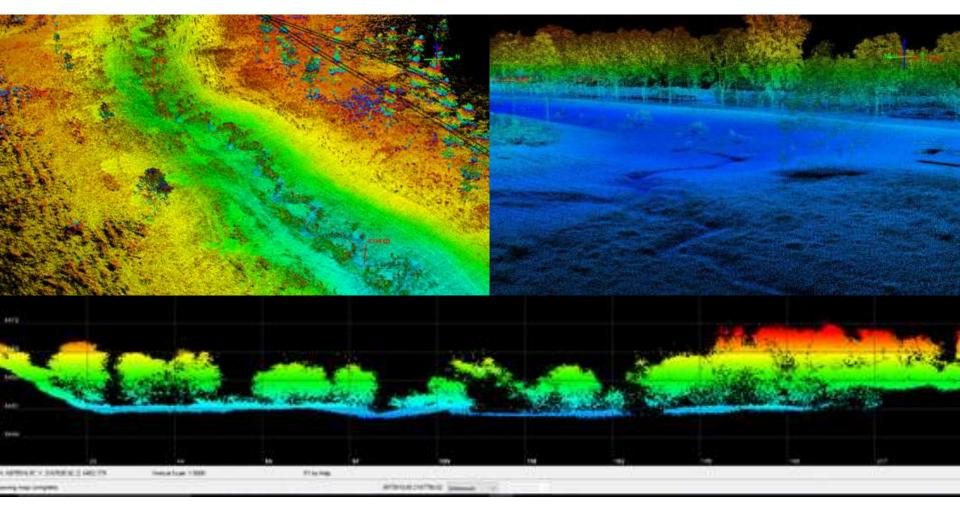


Geosyntec^o

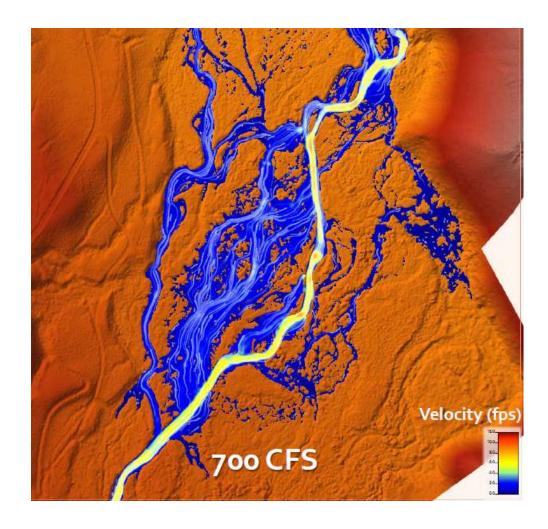
consultants

UAVs Value Proposition – Completing the Data Portfolio



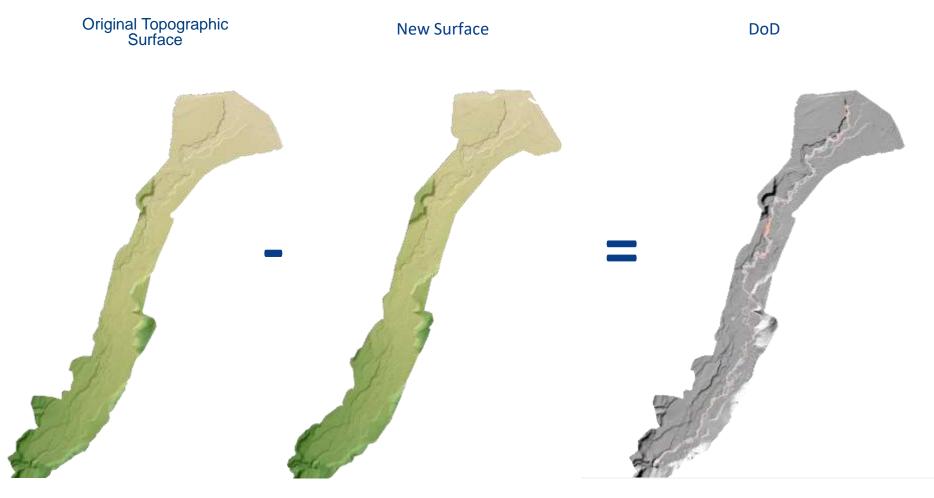

UAV LiDAR – Advantages: Spatial Coverage

UAV LiDAR – Advantages: Data Density


Point density averages between 250 and 500 pts/m²

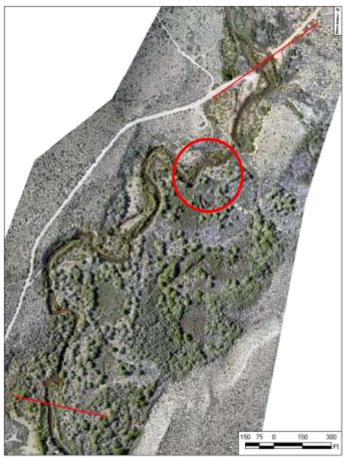
LiDAR Uses in River Ecosystems

- Hydrology Modeling
- Floodplain Mapping
- Riparian Vegetation
 Mapping
- Watershed delineations
- As-built surveys
- Restoration Monitoring
- Channel Morphology
 - <u>Geomorphic Change</u>
 <u>Detection</u>
 - Lateral Migration Analysis
 - Channel Evolution
 - Impacts of prescribed flows to channel morphology



Applications in River Assessment

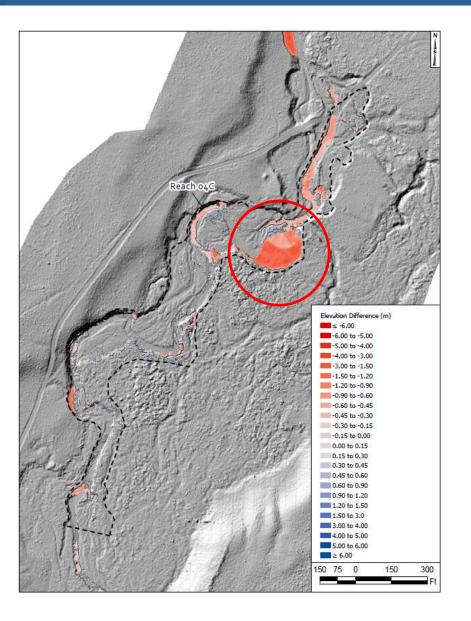
Geomorphic Change Detection



Geomorphic Change Detection

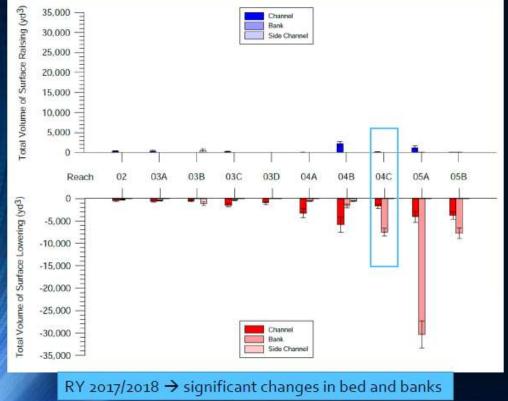
Geomorphic Work Observed from LiDAR Surveys:

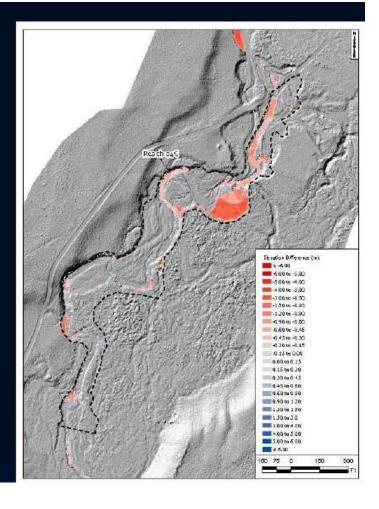
- Major meander bend formation, point bar extension, and terrace erosion
- Increased channel length and creation of new floodplain


May 2017 Imagery

Oct 2017 Imagery

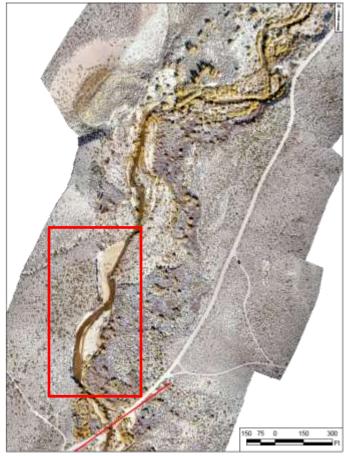
Geomorphic Change Detection: Results


Attribute	Thresholded DoD Estimate:			
AREAL:				
Total Area of Surface Lowering (m ²)	6,701			
Total Area of Surface Raising (m ²)	1,354			
Total Area of Detectable Change (m ²)	8,055			
Total Area of Interest (m ²)	NA			
Percent of Area of Interest with Detectable Change	20%			
VOLUMETRIC:			± Error Volume	% Error
Total Volume of Surface Lowering (m ³)	7,489	±	1,186	16%
Total Volume of Surface Raising (m ³)	682	±	253	37%
Total Volume of Difference (m ³)	8,171	±	1,438	18%
Total Net Volume Difference (m ³)	-6,807	±	1,212	-18%
VERTICAL AVERAGES:			± Error Thickness	% Error
Average Depth of Surface Lowering (m)	1.12	±	0.18	16%
Average Depth of Surface Raising (m)	0.50	±	0.19	37%
Average Total Thickness of Difference (m) for Area of Interest	0.20	±	0.04	18%
Average Net Thickness Difference (m) for Area of Interest	-0.17	±	0.03	-18%
Average Total Thickness of Difference (m) for Area With Detectable Change	1.01	±	0.18	18%
Average Net Thickness Difference (m) for Area with Detectable Change	-0.85	±	0.15	-18%
PERCENTAGES (BY VOLUME)				
Percent Elevation Lowering	92%			
Percent Surface Raising	8%			
Percent Imbalance (departure from equilibrium)	-42%			
Net to Total Volume Ratio	-83%			


Geosyntec[⊳]

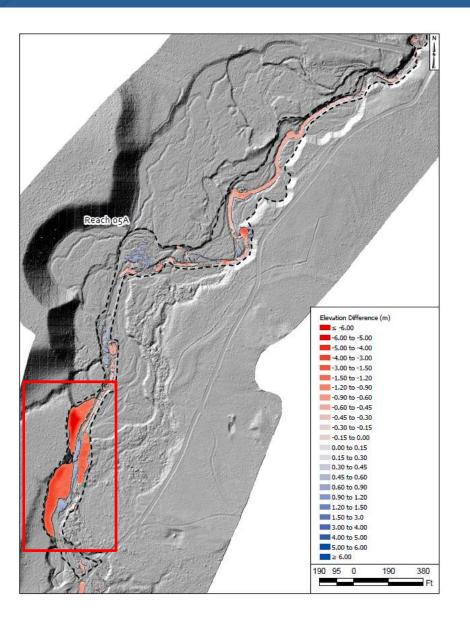
consultants

Analyses Geomorphic Change Detection (RY 2017/2018)


Geomorphic Change Detection

Geomorphic Work Observed from LiDAR Surveys:

- Major terrace erosion from meander and point bar extension
- Increased channel length and creation of new floodplain


May 2017 Imagery

Oct 2017 Imagery

Geomorphic Change Detection: Results

Attribute	Thresholded DoD Estimate:			
AREAL:				
Total Area of Surface Lowering (m ²)	16,671			
Total Area of Surface Raising (m ²)	5,386			
Total Area of Detectable Change (m ²)	22,056			
Total Area of Interest (m ²)	NA			
Percent of Area of Interest with				
Detectable Change	35%			
VOLUMETRIC:			±Error Volume	% Error
Total Volume of Surface Lowering (m ³)	26,594	±	3,362	13%
Total Volume of Surface Raising (m ³)	3,136	±	1,138	36%
Total Volume of Difference (m ³)	29,730	±	4,500	15%
Total Net Volume Difference (m³)	-23,459	±	3,550	-15%
VERTICAL AVERAGES:			±Error Thickness	% Error
Average Depth of Surface Lowering (m)	1.60	±	0.20	13%
Average Depth of Surface Raising (m)	0.58	±	0.21	36%
Average Total Thickness of Difference (m) for Area of Interest	0.47	±	0.07	15%
Average Net Thickness Difference (m) for Area of Interest	-0.37	±	0.06	-15%
Average Total Thickness of Difference (m) for Area With Detectable Change	1.35	±	0.20	15%
Average Net Thickness Difference (m) for Area with Detectable Change	-1.06	±	0.16	-15%
PERCENTAGES (BY VOLUME)				
Percent Elevation Lowering	89%			
Percent Surface Raising	11%			
Percent Imbalance (departure from equilibrium)	-39%			
Net to Total Volume Ratio	-79%			

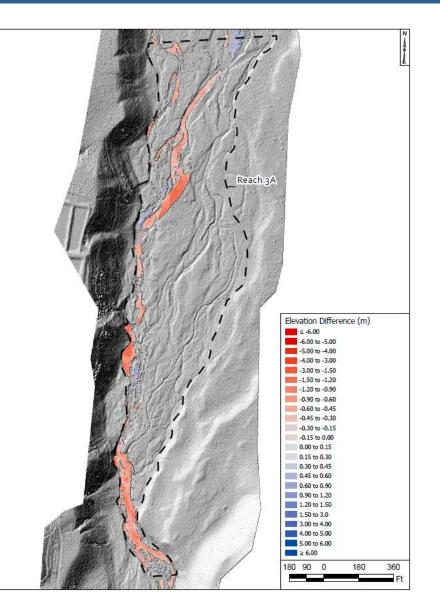
Geosyntec[⊳]

consultants

Geomorphic Change Detection

Geomorphic Work Observed from LiDAR Surveys:

- Major channel migration, point bar extension, and terrace erosion
- Increased channel length and creation of new floodplain


May 2017 Imagery

Oct 2017 Imagery

Geomorphic Change Detection: Results

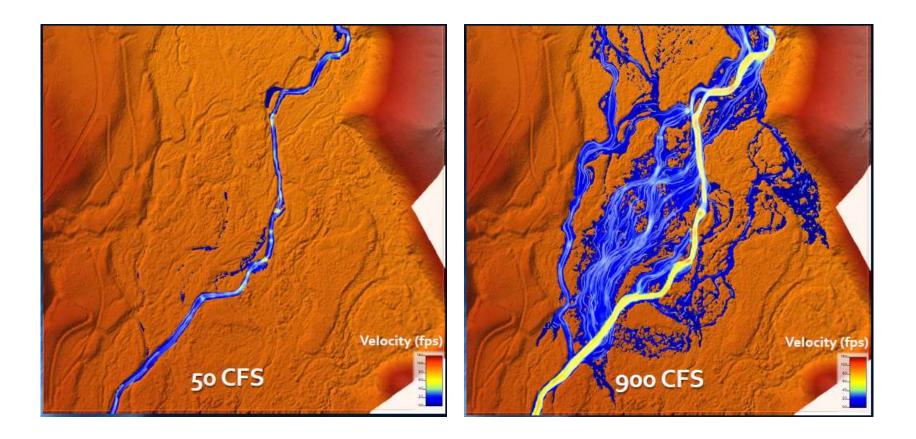
Attribute	Thresholded DoD Estimate:			
AREAL:				
Total Area of Surface Lowering (m ²)	11,111			
Total Area of Surface Raising (m ²)	1,852			
Total Area of Detectable Change (m ²)	12,963			
Total Area of Interest (m ²)	NA			
Percent of Area of Interest with Detectable Change	28%			
VOLUMETRIC:			± Error Volume	% Error
Total Volume of Surface Lowering (m ³)	9,047	±	1,881	21%
Total Volume of Surface Raising (m ³)	891	±	315	35%
Total Volume of Difference (m ³)	9,938	±	2,197	22%
Total Net Volume Difference (m³)	-8,156	±	1,908	-23%
VERTICAL AVERAGES:			± Error Thickness	% Error
Average Depth of Surface Lowering (m)	0.81	±	0.17	21%
Average Depth of Surface Raising (m)	0.48	±	0.17	35%
Average Total Thickness of Difference (m) for Area of Interest	0.22	±	0.05	22%
Average Net Thickness Difference (m) for Area of Interest	-0.18	±	0.04	-23%
Average Total Thickness of Difference (m) for Area With Detectable Change	0.77	±	0.17	22%
Average Net Thickness Difference (m) for Area with Detectable Change	-0.63	±	0.15	-23%
PERCENTAGES (BY VOLUME)				
Percent Elevation Lowering	91%			
Percent Surface Raising	9%			
Percent Imbalance (departure from equilibrium)	-41%			
Net to Total Volume Ratio	-82%			

Geosyntec[⊳]

consultants



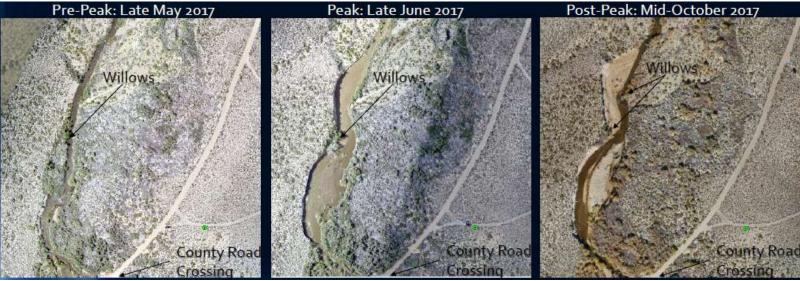
Floodplain Inundation Mapping



H&H Modeling



High-Res Aerial Imagery



High-Res Aerial Imagery

Considerations

- Increased spatial coverage and data density
 - Allow practitioners to better understand the geomorphic rate and magnitude of change and how this relates to stream-system processes influencing form and function of a river system, especially in post-restoration scenarios.
- Increased spatial coverage allows practitioners to evaluate system wide process over time
- Practitioners can focus monitoring and assessment efforts in the future on reaches that have displayed significant geomorphic change
- Particularly useful in restoration monitoring for targeting reaches not meeting restoration criteria
 - Focused mitigation and rehabilitation

Questions

