Response of Trout Populations to Restoration of a Single-Stage Channelized Stream

Matt Kondratieff Aquatic Research Scientist Colorado Parks and Wildlife Fort Collins, CO

Co-Authors: Eric Richer and Paul Winkle

Clear Creek

/co

Limiting Factors: Stream Functions Pyramid

Courtesy Will Harmon, USFWS

1) Remove armored rip rap

- 1) Remove armored rip rap
- 2) Improve floodplain connectivity

- 1) Remove armored rip rap
- 2) Improve floodplain connectivity
- 3) Convert single-stage to three-stage (Rosgen $F \rightarrow Bc$)

Single-Stage Channel

Three-Stage Channel

- Stage 1 The low flow or inner berm channel (thalweg)
- **Stage 2** The bankfull stage channel
- **Stage 3** The flood-prone area or active floodplain starting at the incipient point of flooding

(Used with permission from D.L. Rosgen)

- 1) Remove armored rip rap
- 2) Improve floodplain connectivity
- 3) Convert single stage to three-stage ($F \rightarrow Bc$)
- 4) Establish riparian vegetation

- 1) Remove armored rip rap
- 2) Improve floodplain connectivity
- 3) Convert single stage to three-stage ($F \rightarrow B_c$)
- 4) Establish riparian vegetation
- 5) Enhance in-channel bedform features (i.e. velocity

cover, depth cover and develop spawning areas)

co

Before Single-stage Entrenchment=1.2 F-stream type

After Single-stage Entrenchment=1.2 F-stream type

Treatment	Quantity	Units	Total	% of Total Project
Habitat Boulder	81	Each	234	35%
Boulder Structure	1	Each	9	11%
Boulder Toe	250	LF	2,708	9%
Pool Development	4	Each	14	29%
Point-Bar Development	0	SF	5,420	0%
Floodplain Development	0	SF	18,775	0%

Before Single-stage Entrenchment=1.2 F3/2-stream type

CO

After

Three-stage Entrenchment=2.0 Bc3/2 -Stream Type

Before

/co

After

CC

Treatment	Quantity	Units	Total	% of Total Project
Habitat Boulder	153	Each	234	65%
Boulder Structure	8	Each	9	89%
Boulder Toe	2,458	LF	2,708	91%
Pool Development	10	SF	14	71%
Point-Bar Development	5,420	SF	5,420	100%
Floodplain Development	18,775	SF	18,775	100%

TRADUCTOR DE LA COMPACTICA DE LA COMPACT

CO

Low-Intensity Treatment

High-Intensity Treatment

Control

Treatment vs. Control: Age 1+ Brown Trout Density (#/mile)

Evidence of Treatment effect on Age 1+ Trout Density?

No: "period × type" interaction not significant (p > 0.1)

Low-Intensity Treatment

High-Intensity Treatment

Year

Control

Age 1+ Brown Trout Biomass (lbs/acre)

Treatment vs. Control: Age 1+ Brown Trout Biomass (lbs/acre)

Evidence of Treatment effect on Age 1+ Trout Biomass?

No: "period × type" interaction not significant (p > 0.1)

Low-Intensity Treatment

High-Intensity Treatment

Control

Treatment vs. Control: Total Brown Trout Density (#/mile)

Evidence of Treatment effect on Total Trout Density?

No: "period × type" interaction not significant (p > 0.1)

Low-Intensity Treatment

High-Intensity Treatment

Year

Control

Treatment vs. Control: Total Brown Trout Biomass (lbs/acre)

Evidence of Treatment effect on Total Trout Biomass?

Yes "period × type" interaction IS significant (p = 0.07; p<0.1)

AND

"period" IS significant (p = 0.0009; p<0.1)

Treatment vs. Control

Treatment

Low vs. High vs. Control: Total Brown Trout Biomass (lbs/acre)

Evidence of Treatment effect on Total Trout Biomass?

Yes "period × type [High-Intensity]" interaction IS significant (p = 0.027; p<0.1)

AND

"period" IS significant (p = 0.0009; p<0.1)

Low vs. High vs. Control

Channel Bed Characteristics

Treatment Reach	D50		% change
Low-Intensity	Before	After	
	131.3 mm	77.0 mm	- 41% (finer)
High-Intensity	Before	After	and the second
	125.5 mm	81.5 mm	- 35% (finer)

Departure from natural conditions (such as channelization)
 has negative consequences to fish populations that may not
 recover without physical intervention

Conclusions

- Departure from natural conditions (such as channelization)
 has negative consequences to fish populations that may not
 recover without physical intervention
- Restoration of channelized, single-stage streams to a multistage channel form with a functional floodplain has greatest potential for increasing trout biomass, density and spawning habitat suitability

Conclusions

- Departure from natural conditions (such as channelization)
 has negative consequences to fish populations that may not
 recover without physical intervention
- Restoration of channelized, single-stage streams to a multistage channel form with a functional floodplain has greatest potential for increasing trout biomass, density and spawning habitat suitability
- Channelization and loss of floodplain connectivity have the potential for devastating impacts to wild trout populations

