# Stressors and their impact on stream health and restoration outcomes in the Chesapeake Bay Watershed

Neely L. Law, Fairfax County Office of Environment & Energy Coordination Chris Ruck, Fairfax County, DPWES, Stormwater Planning, Watershed Assessment Branch





A Fairfax County, VA, publication August 1, 2022

- Overview of Chesapeake Bay Program and Stream Health
- Major Stressors Impacting Stream Health
- Modeling Recovery
- Monitoring for Recovery: Fairfax County Case Study
- Conclusions



#### Stressors and their impact on stream health and restoration outcomes in the Chesapeake Bay Watershed Stream Health and The Chesapeake Bay Program

### CHESAPEAKE BAY PROGRAM

- A regional partnership working together to meet the goals of the Chesapeake Bay Watershed Agreement
- Agreement includes 10 goals, 31 outcomes that are managed by 6 Goal Implementation Teams and their Work Groups







# Stressors and their impact on stream health and restoration outcomes in the Chesapeake Bay Watershed Stream Health and The Chesapeake Bay Program

### STREAM HEALTH OUTCOME

- Continually improve stream health and function throughout the watershed. Improve health and function of 10 percent of stream miles above the 2008 baseline for the Chesapeake Bay watershed.
- Stream health measured and tracked by the "Chessie BIBI"
  - A benthic, multi-metric indicator of stream health







# Stressors and their impact on stream health and restoration outcomes in the Chesapeake Bay Watershed Chesapeake Bay TMDL

- Adopted in 2010 through Executive Order 13508, the Chesapeake Bay TMDL set pollutant load reduction targets for nitrogen, phosphorus and sediment
- Stream restoration is a key management action to reduce nutrient loads in the agricultural and urban land use sectors
  - Over 950 miles (or ~ 1% of total stream miles) of stream restoration implemented or planned from 2010
     2025
  - Significant investments by Federal, State and local jurisdictions
  - Variable outcomes

*The impact of stream restoration to restore stream functions and health is debated* 







Implement actions to remove stressors Restore process/ functional improvement



Increase stream health & function

**Phase 1:** Which stressors and drivers are most affecting stream health? **Phase 2:** Which of these stressors and drivers can be changed through management actions?

**Phase 3**: Following implementation of management efforts, how is stream health changing? How can we better characterize the response through both biological and non-biological metrics?



#### Walsh et al 2005

### What are the Key Stressors Impacting Stream Health?





# Stressors and their impact on stream health and restoration outcomes in the Chesapeake Bay Watershed Key Stressors Impacting Stream Health

- Collaboration with the USGS\* and SHWG
- Meta-analysis of literature review and database of regulatory impaired streams (ATTAINS)



\* Fanelli, R, M. Cashman and A. Porter. 2022. Identifying key stressors driving biological impairment in freshwater streams in the Chesapeake Bay watershed, USA. In Review.



#### Sources

- Urbanization, agriculture, mining, industrial point sources and wastewater
- ALL studies
  - Salinity or major ions, geomorphology and toxic contaminants
- AGRICULTURAL studies
  - Toxic contaminants, geomorphology and nutrients
- URBAN studies
  - Flow, salinity or major ions, toxic contaminants and geomorphology







# What is the impact of stream restoration and the removal of stressors on stream health?

- Modeling approach to simulate stream's functional response to removal of stressor(s)
  - How do the interrelationships amongst stream functions and stressors impact the success of reach-scale restoration and its time frame?
- 5 scenarios were tested\* representing different levels of stress and initial conditions

\*Ibrahim, Y., B. Amir-Faryar and N. Law. 2022. Complex adaptive system approach for studying the impact of externalities on the success of restoring stream functions. J. Hydrol. Eng, 27(6):04022009





#### Stressors and their impact on stream health and restoration outcomes in the Chesapeake Bay Watershed Modeling Stream Restoration Outcomes (& Expectations)



N

Ibrahim, Y., B. Amir-Faryar and N. Law. 2022. Complex adaptive system approach for studying the impact of externalities on the success of restoring stream functions. J. Hydrol. Eng, 27(6):04022009



Stressors and their impact on stream health and restoration outcomes in the Chesapeake Bay Watershed Modeling Stream Restoration Outcomes (& Expectations)

#### Table 1. Functions and their order of interactions

| Function | Agent/function                       |  |  |  |  |  |  |  |
|----------|--------------------------------------|--|--|--|--|--|--|--|
| 1        | General hydrodynamic balance         |  |  |  |  |  |  |  |
| 2        | Maintain stream evolution processes  |  |  |  |  |  |  |  |
| 3        | Surface water storage processes      |  |  |  |  |  |  |  |
| 4        | Sediment community                   |  |  |  |  |  |  |  |
| 5        | Provide for riparian succession      |  |  |  |  |  |  |  |
| 6        | Energy management processes          |  |  |  |  |  |  |  |
| 7        | Maintain substrate and structural    |  |  |  |  |  |  |  |
|          | processes                            |  |  |  |  |  |  |  |
| 8        | Quality and quantity of sediments    |  |  |  |  |  |  |  |
| 9        | Biological communities and           |  |  |  |  |  |  |  |
|          | processes                            |  |  |  |  |  |  |  |
| 10       | Surface/subsurface water connections |  |  |  |  |  |  |  |
| 11       | Maintain water and soil quality      |  |  |  |  |  |  |  |
| 12       | Maintain landscape pathways          |  |  |  |  |  |  |  |
| 13       | Maintain trophic structures and      |  |  |  |  |  |  |  |
|          | processes                            |  |  |  |  |  |  |  |
| 14       | Chemical processes and nutrient      |  |  |  |  |  |  |  |
|          | cycles                               |  |  |  |  |  |  |  |
| 15       | Provide necessary habitats           |  |  |  |  |  |  |  |



Ibrahim, Y., B. Amir-Faryar and N. Law. 2022. Complex adaptive system approach for studying the impact of externalities on the success of restoring stream functions. J. Hydrol. Eng, 27(6):04022009



| Function | Agent/function                              | k = 1 | k = 2 | k = 3 | k = 4 | <i>k</i> = 5    | k = 6    | <i>k</i> = 7 | k = 8   | k = 9        | k = 10        | k = 11 | k = 12 | k = 13      | k = 14 |
|----------|---------------------------------------------|-------|-------|-------|-------|-----------------|----------|--------------|---------|--------------|---------------|--------|--------|-------------|--------|
| 1        | General hydrodynamic balance                | 2     | 3     | 4     | 5     | 6               | 7        | 8            | 9       | 10           | 11            | 12     | 14     | 15          | 13     |
| 2        | Maintain stream evolution processes         | 1     | 3     | 4     | 5     | 6               | 7        | 8            | 10      | 11           | 12            | 14     | 15     | 9           | 13     |
| 3        | Surface water storage processes             | 1     | 4     | 6     | 10    | 11              | 12       | 14           | 15      | 2            | 5             | 7      | 8      | 9           | 13     |
| 4        | Sediment community                          |       | 5     | 6     | 7     | 8               | 9        | 11           | 15      | 1            | 13            | 14     |        |             | -      |
| 5        | Provide for riparian succession             | 1     | 2     | 3     | 4     | 6               | 12       | 14           | 15      | 9            | 13            |        |        |             |        |
| 6        | Energy management processes                 | 1     | 2     | 3     | 4     | 5               | 7        | 8            | 15      | <u> </u>     |               | _      |        |             |        |
| 7        | Maintain substrate and structural processes | 1     | 2     | 4     | 6     | 7               | 10       | 15           | 5       | 9            | 11            | 13     |        |             | Τ      |
| 8        | Quality and quantity of sediments           | 2     | 4     | 5     | 6     | 7               | 10       | 15           | 1       | 9            | 11            | 14     |        |             |        |
| 9        | Biological communities and processes        | 5     | 11    | 13    | 14    | 15              | 1        | 2            | 3       | 7            | 8             | 10     | 12     |             | Ħ      |
| 10       | Surface/subsurface water connections        | 1     | 5     | 11    | 15    | 3               | 9        | 12           | 13      |              | <del></del>   | —      |        | s <u></u> s |        |
| 11       | Maintain water and soil quality             | 8     | 9     | 13    | 14    | 5               | _        |              |         |              | —             | —      |        | —           | —      |
| 12       | Maintain landscape pathways                 | 9     | 13    | 14    | 15    | 6               | <u> </u> | 0            | <u></u> |              |               |        |        |             |        |
| 13       | Maintain trophic structures and processes   | 9     | 11    | 14    | 8     | 3 <del></del> 3 |          |              |         |              | <del>21</del> |        | —      | S           | —      |
| 14       | Chemical processes and nutrient cycles      | 8     | 9     | 13    | 6     | 1               |          |              |         |              |               |        | _      |             | _      |
| 15       | Provide necessary habitats                  | 9     | 12    | 13    |       |                 |          |              |         | <del>7</del> |               | _      | _      |             |        |

Table 1. Functions and their order of interactions (from Fischenich, 2006)

Note: k = degree of connectivity among functions.



#### Stressors and their impact on stream health and restoration outcomes in the Chesapeake Bay Watershed Example Scenario Modeled

• Scenario 1: Strategy of focusing on lower-level functions such as the hydrodynamic function





### Monitoring for Recovery: Fairfax County, VA Case Study



#### Stressors and their impact on stream health and restoration outcomes in the Chesapeake Bay Watershed Monitoring for Biological Recovery – Index of Biotic Integrity (Pre-Post)

45.1

|                        |      | $\mathbf{V}$ | ↓    | ↓      | <b>I</b> |
|------------------------|------|--------------|------|--------|----------|
| Stream Restoration     | Pre  | N,pre        | Post | N,post | Min,post |
| Bridle Path            | 17.6 | 1            | 30.3 | 6      | 14.5     |
| CU9214B Big Rocky PhII | 43.2 | 1            | 53.0 | 3      | 38.9     |
| DE9244G1               | 30.9 | 3            | 42.6 | 2      | 35.6     |
| DF82-0008              | 64.6 | 1            | 60.9 | 2      | 53.5     |
| Flatlick Confluence    | 23.1 | 1            | 27.7 | 6      | 17.3     |
| Poplar Springs         | 26.8 | 2            | 31.0 | 6      | 21.8     |
| Tripps Run             | 18.6 | 1            | 24.7 | 6      | 17.7     |
| Wolftrap Creek         | 46.3 | 1            | 35.6 | 6      | 32.1     |

 Flatlick Phase II
 40.8
 10
 50.4
 3





#### Stressors and their impact on stream health and restoration outcomes in the Chesapeake Bay Watershed Benthic Macroinvertebrate Taxa vs Stressor (% Imp Area), 59 taxa







# Stressors and their impact on stream health and restoration outcomes in the Chesapeake Bay Watershed Flatlick Branch Stream Restoration (Phases 1 & 2)





- Stressors Addressed through restoration design
  - Geomorphology & (Sediment)
  - Flow regime
  - Nutrients
- Flatlick Branch
  - Phase 1 1850lf
  - Phase 2 4600lf
- Phase 1 & 2 are credited with the following reductions:
  - P 490 lbs/yr
  - N 4,387 lbs/yr
  - Sediment 95 tons/yr
- USGS gage on-site



Stressors and their impact on stream health and restoration outcomes in th<mark>e C</mark>hesapeake Bay Waterehed

## Flatlick Branch - Phase 2 Stream sestora





#### Stressors and their impact on stream health and restoration outcomes in the Chesapeake Bay Watershed

### Flatlick Branch - Phase 2 Stream Restoration - Stressors





## Stressors and their impact on stream health and restoration outcomes in the Chesapeake Bay Watershed Wrap- Up and Closing Remarks

- Understanding of stream ecosystems continues to evolve
- Multiple stressors impacting stream health
- Management practices that focus on singular impairments/sources/stressor may limit holistic restoration outcomes
- Uncertainty of restoration outcomes
- Recognize that regulatory and non-regulatory drivers of stream restoration impact restoration approach
- Need for robust monitoring, particularly linked expected restoration outcomes





### For additional information, please contact

Neely Law

neely.law@fairfaxcounty.gov

christopher.ruck@fairfaxcounty.gov

**Chris Ruck** 

www.fairfaxcounty.gov/publicworks

www.fairfaxcounty.gov/environment-energy-coordination



