

MARYLAND DEPARTMENT OF TRANSPORTATION

Use of Protocol 1 for Preventive Sediment Credit

National Stream Restoration Conference Craig Carson

August 2, 2022

Overview

- Project Description
- Methodology
- Results
- Lessons Learned
- Future Considerations

Site: Gramies Run

Project Description

- Develop a SOP using Protocol 1 for the BANCS model
- MDOT SHA Team performed and or managed 35 sites:
 - Stream assessments
 - Monitoring
 - TMDL Crediting
 - Reporting
- Over 40 miles of stream channels
 - Task 1 included ~15 miles SHA stream and outfall sites
 - Task 2 included ~28 miles Full Delivery stream sites

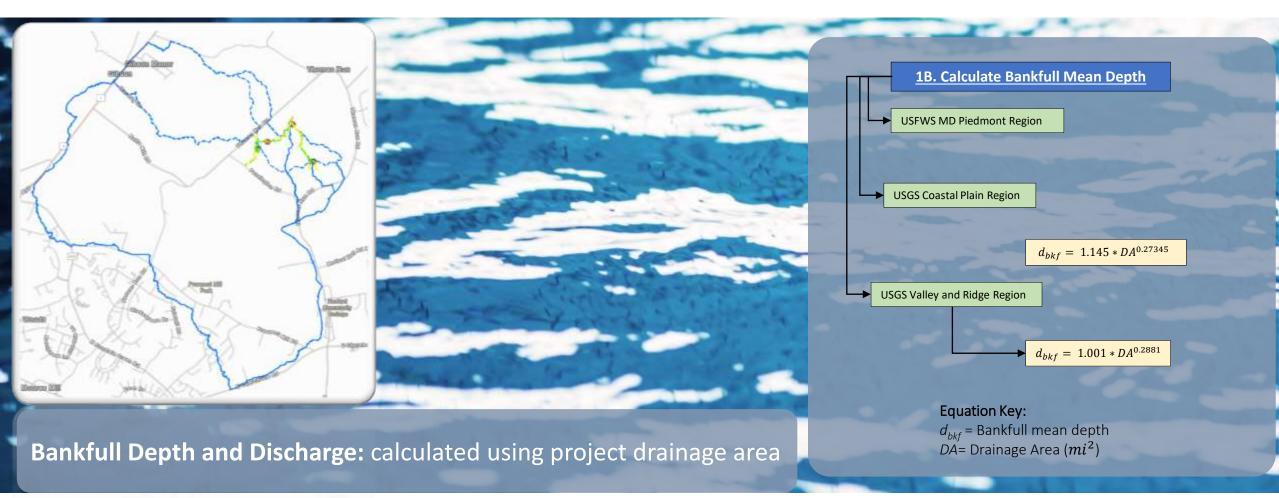
STANDARD OPERATING PROCEDURE: ESTIMATING BANK EROSION USING THE BANK ASSESSMENT FOR NON-POINT SOURCE CONSEQUENCES OF SEDIMENT (BANCS) MODEL FOR TMDL SEDIMENT MONITORING

Prepared for

Maryland Department of Transportation Stats Highway Administration 707 North Calvert Street Baltimore MD, 21202

STATE HIGHWAY ADMINISTRATION

Prepared by


McCornsick Taylor, Inc. 509 South Easter Street, 42, Ploor Baltimore, MD 21202

April 30, 2018

Project Locations Across the State

BANCS Method - Bank Assessment for Non-Point Source Consequences of Sediment

- Used BEHI worksheet from Rosgen's River Stability Field Guide
- Indexed factors: study bank height, bankfull height, root depth, weighted root density, bank angle and surface protection
- Occasional bank material and stratification adjustments

• Near Bank Stress (NBS): Method 5

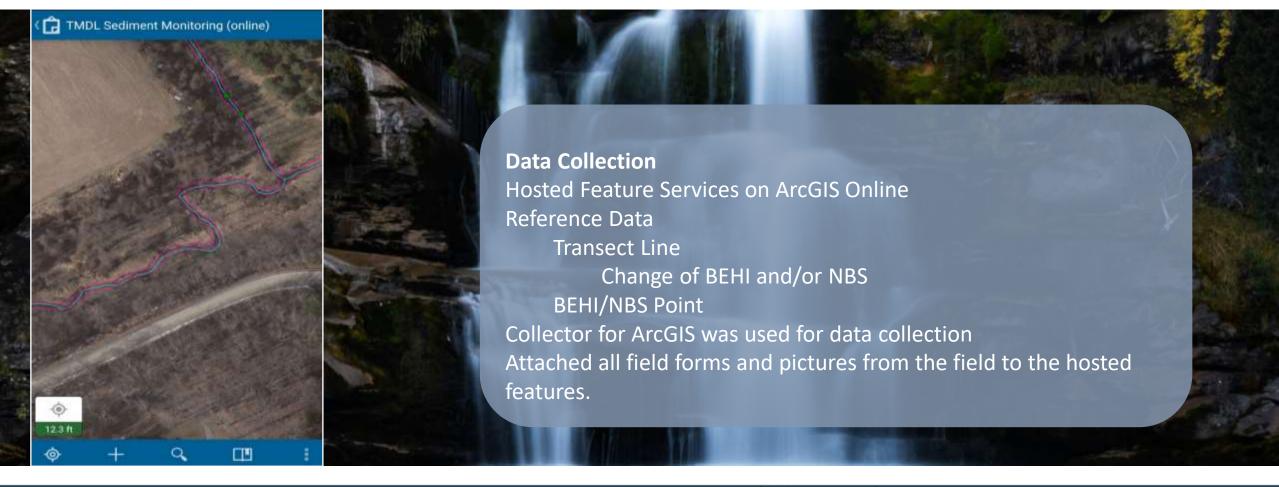
- Uses ratio of Near-Bank Maximum Bankfull Depth to Mean Bankfull Depth
- Baseflow Condition measurements:
 - Measure maximum water depth within 1/3 of the width of the channel closest to the study bank
 - Add mean bankfull depth (d_{bkf})
 - Measure and subtract water depth of the closest riffle to the study bank
 - NBS Value = $\frac{d_{nb}}{d_{11}}$

Near-Bank Stress (NBS) Ratings	Value from NBS Method 5
Very Low	<1.00
Low	1.00-1.50
Moderate	1.51-1.80
High	1.81-2.50
Very High	2.51-3.00
Extreme	>3.00

- Cross Sections:
- At least one cross section is taken per BEHI type
- Survey cross section with detailed measurement of streambanks
- Take LB, RB, US and DS photos

Whiterock Court

Soil Sampling:


- Take bulk density core soil sample (NRCS, 2001)
- Collect 1.5 cups of soil for nutrient soil sampling (TN and TP)

Park Drive BD Sample

6 ft headcut – Prince George's County MI

ft headcut – Prince George's County MD

(IMDL S	edimen	t Monito	ring (onlin	e)
@ 20 h					
¢		ŧ	Q		1

/			
	1818	1000 MA	

Transect Line Length: 13.35 ft Edited by Dawn Blanchard on 8/28/19 at 2:12 PM

NBS OR BEHI

STREAM

COMMENTS

	SITE NAME
12	McGill run
	TRIBUTARY 2
	LEFT BANK OR RIGHT BANK Right Bank
	BEHI/NBS SEGMENT NUMBER
	вені score High (30 - 39.5)
	BEHI RATING COMMENTS
	NBS_SCORE Low: 1.00 - 1.50
	NBS RATING COMMENTS

to

÷

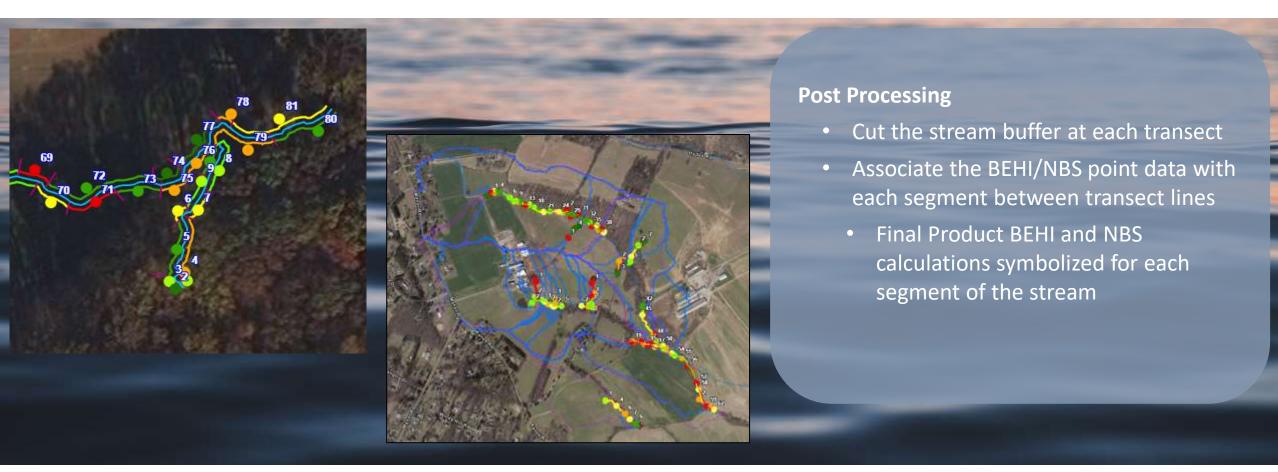
10

.

BEHI_NBS_Point: McGill run

Edited by Ben Uhler3 on 8/16/19 at 12:58 PM

84


long-76.807206121at/39.54302599

Field work

- Place a transect at the location the BEHI and/or the NBS segment changed
- BEHI/NBS Point
 - Place between the transect lines
 - Entered BEHI and NBS data
- Attach photos of the study bank and stream perspective
 - Taken for documentation and QC process

ft headcut – Prince George's County MD

*

Delivery Factor

- Results provided for Protocol 1
 - •with delivery factors applied
 - •without delivery factors applied
- Site-specific delivery factors are applied to sediment, TN and TP
- Delivery factors are found using MDE's "Maryland Chesapeake Bay Land-River Segment Map" and the Phase 6 CAST-Source data spreadsheet.

LandikverSeptent Los	adSource	MinaryToRivet_Th_Factor :	itream?offiver_TP_factor	threamToRiver_SED_Factor	RiverTation_14_factor	liver alley 18 factor	RiverTathey_MD_Factor	HTH.	新担	B# 158
N42188811_2890_2765 M	tream Bet and Bank	.0.87	0.71	0.41	\$.77	4.52	6.47	0.67	6.37	0.29

Convert sediment and nutrient pollutant reduction loads to impervious acre credit:

Average Pollutant Load Reduction (lbs/acre/year)=

Total Annual Pollutant Load Reduction $(\frac{lbs}{year} or \frac{tons}{year})$

Drainage Area (acres)

Impervious Acre Conversion Factor (acre /acre) = $\frac{Aven}{Delta}$

 $f = \frac{Average \ Pollutant \ Load \ Reduction \ (\frac{lbs/acre}{year} \ or \frac{tons/acre}{year})}{Delta \ Impervious \ Surface \ and \ Forest \ (\frac{lbs/acre}{year} \ or \frac{tons/acre}{year})}$

Average Acre of Treatment for Nutrient and Sediment per LF (acre/LF) =

Average Impervious Acre Conversion Factor $\left(\frac{acre}{acre}\right) * \frac{Drainage Area (acre)}{Site Length (LF)}$

Average Acre of Treatment for Nutrient and Sediment (acre) = Average Acres of Treatment for Nutrients and Sediment per LF * Site Length (LF)

Example Results

			-																
TMDL Water Quality Res	sults																		
GRAMIES RUN																			
	Protoc	ol 1 TMDL	. Credit	Site Length		Impervious		rvious Surfac	e and Forest	Average F	Pollutant Load	d Reduction	Impervi	ous Acre (AC	Conversio /AC)	n Factor	Average Acres of Treatment for	Average Acres of Treatment for Nutrients	Calculated Total Impervious
POI	TN (Ibs/yr)	TP (Ibs/yr)	TSS (tons/yr)	(Linear Feet)	Area (Acres)	Area	TN	TP (Ibs/acre/yr)	TSS (tons/acre/yr)	TN (Ibs/acre/yr)	TP (Ibs/acre/yr)	TSS (tons/acre/yr)	TN	ТР	TSS	Average	Nutrients and Sediment per Linear Foot	and Sediment per 100 Linear Feet	Acre Treatment (Acres)
Gramies Run	599	90	189	5160	1990	123	7.69	1.91	0.43	0.30	0.05	0.10	0.04	0.02	0.22	0.09	0.04	3.7	188.6
Calculations excluding se	diment de	elivery ra	tio																
	Protoc	ol 1 TMDL	. Credit	Site Length			Delta Impervious Surface and Forest		Average Pollutant Load Reduction		I Reduction	Impervious Acre Conversion Factor (AC/AC)		n Factor	Average Acres of Treatment for	Average Acres of Treatment for Nutrients	Calculated Total Impervious		
POI	TN (Ibs/yr)	TP (Ibs/yr)	TSS (tons/yr)	(Linear Feet)	Area (Acres)	Watershed Area	TN	TP (lbs/acre/yr)	TSS (tons/acre/yr)	TN (Ibs/acre/yr)	TP (Ibs/acre/yr)	TSS (tons/acre/yr)	TN	ТР	TSS	Average	Nutrients and Sediment per Linear Foot	and Sediment per 100 Linear Feet	Acre Treatment (Acres)
Gramies Run	763	150	542	5160	1990	123	7.69	1.91	0.43	0.38	0.08	0.27	0.05	0.04	0.63	0.24	0.09	9.3	479.6

Delta impervious Surface and Forest – MDE 2014

Summarized Data

Reach/Site	Total Sediment Load w/ DF (lbs/ft/yr)	Total Sediment Load w/out DF (lbs/ft/yr)	2.7
Charles Branch Tribs - Rosaryville	68	188	-
Gramies Run	74	210	2.00
Gunpowder Near MD165	63	183	
Gunpowder Near MD145	44	126	-
Little Tonoloway	87	192	
Big Pipe Creek	54	90	· Car
North Fork Linganore	42	88	t.
Little Catoctin at MD340	128	292	
Piney Run at MD32	39	170	1
Israel Creek at MD550	96	198	
Israel Creek at Stauffers	49	101	-
Jones Falls at Salt Dome	67	173	

MDOT SHA Stream Data (2018)

- Total Sediment Load with DF Applied = 810 lbs/ft/yr
- Total Sediment Load without DF Applied = 2,011 lbs/ft/yr
- Average Total Sediment Load with DF Applied = 68 *lbs/ft/yr*
- Average Sediment Load without DF Applied = 168 lbs/ft/yr

Summarized Data

Reach/Site	Total Sediment Load w/ DF (lbs/ft/yr)	Total Sediment Load w/out DF (lbs/ft/yr)
Fourth Mine	5	80
Long Green Creek	27	125
Bacon Ridge	35	102
Bens Branch	57	123
Bush Creek	61	128
Little Elk Creek	50	139
Mardella Branch	22	97
Marylea Farm	37	108
McGill Run	5	79
Muddy Creek	1	129
NE Creek	63	111
North Creek	59	125
Plymouth Woods	101	215
Rolling Ridge	2	31
Tarnans Branch	32	94
UT Patapsco Creek	33	148
UT Broad Run	64	118
UT Talbot Run	66	141
UT Little Patuxent	82	232
UT South Branch Patapsco	31	135

MDOT SHA Full Delivery Stream Data (2019)

- Total Sediment Load with DF Applied = *831 lbs/ft/yr*
- Total Sediment Load without DF Applied = 2,462 lbs/ft/yr
- Average Total Sediment Load with DF Applied = 42 lbs/ft/yr
- Average Sediment Load without DF Applied = *123 lbs/ft/yr*

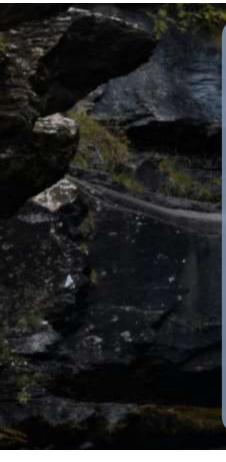
Summarized Data

Comparison with Chesapeake Bay Expert Panel Interim Rates

	Source		TN (lbs/ft/yr)	TP (lbs/ft/yr)	TSS (lbs/ft/yr)
	Chesapeake Bay Interim		0.075	0.068	248
s		Average	0.136	0.051	141
	MDOT SHA	Max Value	0.310	0.134	292
		Min Value	0.030	0.009	31

Comparison of TN and TP with North Carolina Date in Piedmont Region

5	Source/Method	Nitrogen (Ibs/ton)	Phosphorus (lbs/ton)	
	NC State University	1.34*	0.65*	
	Tetra Tech (NC Piedmont)	1.78**	0.46**	NC State University Data presented by Barbara Doll, PhD, P
	Chesapeake Bay Interim	2.28	1.05	(2018) *3 samples (n=12)
	MDOT SHA	2.00	0.87	**Tetra Tech – 128 samples, TN (n=19) and TP (n=109)


Lessons Learned

Standardizing Bankfull

- Prior to field work, confirm site extents and drainage areas
- Backup data on arc collector if not online
- Make sure to take photos of the banks every 200 ft even if the bank features remain the same
- Verify assessment lengths with restoration lengths
- Bulk Density Results

	Bulk Density (lbs/cf)
Average	75.7
Max Value	141.3
Min Value	29.7

Future Considerations

- Sites with cross section data can be used with other BANCS data to develop erosion curves for Maryland or Chesapeake Bay Region
- Compiling and sharing results for future planning and site selection
- Delivery factors significantly affect sites upstream of large sinks (reservoirs)
- 2021 MDE Guidance
- Local TMDLs

Thank you! MOTMARYLAND DEPARTMENT OF TRANSPORTATION STATE HIGHWAY ADMINISTRATION