Designing to Account for Variability

First National Stream Restoration Conference

August 1st, 2022

Purpose

 Introduction to our thought process on how we develop restoration designs to account for variables that we can't (or can't yet) fully quantify.

• Triggered by:

- Lack of available data
- Inability to collect data due to impairment
- Rapid change in environmental factors that influence data (wildfires, climate change)
- Inherent unknowns associated with working in natural environments where most factors are outside of your control

Fountain Creek Restoration at Riverside

Fountain Creek Restoration at Riverside

- Many physical variables that exacerbate theoretical variables
- Sandy soils & enormous sediment load
- Extensive infrastructure constraints
- Severely impaired stream system
- Persistent hydromodification
- Flashy hydrograph
- Lack of quality data
- DA = 538 square miles (Q100=57,000 cfs?)

Problem: Channel Forming Flow?

- Channel forming flow estimations varied
- Lower flows probably move the most sediment

Table 3 – Log-Pearson Type III Statistical Analysis of USGS Gage Data							
	v (cfs)						
Recurrence	USGS 70105800	USGS 70106000					
	(DA = 495 mi ²)	(DA = 681 mi ²)					
1.01-Year	545	1,300					
1.25-Year	2,203	3,448					
1.5-Year	3,090	4,550					
2-Year	4,864	5 <mark>,</mark> 870					

Problem: Flow Duration?

- Significant changes to flow duration over the past three decades
- Ongoing hydromodification
 - Development
 - Major water diversions
 - Fires
- Lower flows move the most sediment

Problem: Suspended Sediment Load?

• Varies significantly based on flow

Problem: 100-Year Flood Flow?

- Sometimes a requirement for a project
- Flood maps and flood insurance are one thing
- Designing is another

- FEMA FIS = 57,000 cfs
- Fountain Creek Hydrology Report = 26,674 cfs
- Stream Stats = 13,100 cfs

Problem: Natural Stream Tendency?

- Wandering low flow channel
- Largely influenced
 by where sediments
 deposited after last
 flood

Stream Flashiness

- Extremely flashy rainfall/runoff response
- How do installed features respond to rapid change in stream power?

Solution: Channel Forming Flow

- Bankfull channel designed for the most probable channel forming flow (see previous)
- What if actual flow is lower
 - Entrenchment of flood flows ightarrow erosion
 - Shallow depths at low flow \rightarrow fish barrier
- What if actual flow is higher
 - Frequent overbank flows \rightarrow impacts to infrastructure
- Our solution
 - Designed mild sloping bankfull slide slopes w/ screened alluvium and dense plantings
 - Designated low flow channel
 - Modeled range of low flow scenarios to ensure velocity barriers were avoided
 - Incorporated scattered boulder clusters to provide pocket water and velocity refuge
 - Designed floodplain grading and overflow channels to direct overbank flows away from critical infrastructure

Solution: Channel Forming Flow

Minimal velocity refuge in channel margins

Pre-Project Conditions 1,676 cfs

Highly erosive

conditions adjacent to critical infrastructure

Active channel has direct connection with eroding terrace

Velocity (ft/s)

Solution: Channel Forming Flow

Significant increase in velocity refuge within

channel margins

Post-Project Conditions 1,676 cfs

Reduction in stream power adjacent to critical infrastructure

> No interaction between – active channel and eroding terrace

> > Velocity (ft/s)

583-457-350-

Solution: Flow Duration & Sediment Load

- What will the flow duration curve look like in the future
- What if flows decrease
 - Contained within active channel
- What if flows increase
 - Sediment surplus \rightarrow aggrading project reach
- Our solution
 - Designed reinforced riffles with screened, native alluvium and increased mat thickness
 - Enlarged pools and slightly flattened point bars to allow for storage of surplus sediment
 - Designed a forced deposition zone where excess sediment can be deposited prior to entering the project reach
 - Multiple sediment transport analyses
 - Capacity
 - Mobile bed
 - Competence

----- Proposed Start ----- Proposed End

Table 8 - Sediment Competence Analyzia Results for Proposed Design

Proposed Design		Required		Largest	Largest	
Depth (ft)	Slope (ft/ft)	Depth (ft)	Slope (ft/ft)	Available Particle (mm)	Predicted Particle (mm)	Competent?
2.33	0.0048	2.71	0.0056	130	116	Slightly Under- Competent

Makes sense given location in watershed

Sediment Supply = 40,100 Tons/Year (includes all flood flows)

Sediment Capacity = 30,000 Tons/Year (includes all flood flows)

Makes sense given location in watershed We <u>HAVE</u> to store sediment!

LET'S STORE IT HERE!

- Dsediment load=10,100 tons/year (avg.)
- Vol.=123,000 cf/year
- Storage Area=58,000 sf
- Expected Annual Deposition= 2 feet <u>IF</u> a major flood occurs
- Expected Annual Deposition= 3 inches <u>IF</u> only bankfull occurs

139-139-118-188-188-188-188-11-11-

AND LET'S TRY THIS!

Solution: 100-Year Flood Flow

- What will the flow duration curve look like in the future
- *What if* flows are lower than expected
 - Great
- What if flows are greater than expected
 - Inundation of critical infrastructure
- Our solution
 - Designed a multi-stage bankfull channel, and flood prone bench, to efficiently convey base flows up to minor floods
 - Re-graded the low terrace to efficiently convey moderate flood flows
 - Designed a primary overflow channel to alleviate flood pressure within the bankfull channel
 - Designed floodplain grading to connect to relic secondary and tertiary overflow channels
 - Designed grading to direct flood flows away from critical infrastructure

Solution: 100-Year Flood Flow

Solution: Natural Stream Tendency

- Where will the next flood deposit excess sediment?
- What will be the resulting downstream impact?
- We do know where we <u>don't</u> want the stream to go.
- Our solution
 - Designed a forced deposition zone where excess sediment can be deposited prior to entering the project reach.
 - Designed buried floodplain protection in the primary overflow channel to prevent avulsion.
 - Minimized the use of in-stream structure.
 - Design focused on adding boundary and floodplain roughness for stability.

Solution: Stream Flashiness

- Need to critically and thoroughly evaluate
- Our solution
 - Evaluated design using a variety of hydraulic design equations
 - Detailed force analysis on all large wood structures

Multi-Point Hydraulic Calculations

Before & After (3 flood events)

Looking Downstream at Start of Project

Looking Upstream at West Bank Trib. Confluence

Looking Upstream at Bend #2

Looking Downstream at Riffle #2

Thank You!

Questions?