

Civil & Environmental Consultants, Inc.

Macroscale Urban Culvert Daylighting & Stream Restoration, Flooded with Challenges, Innovation, and Restoration Success

Stream Restoration 2022: Sharing Visions for the Future

Matthew D. Gramza, P.E., CFM, CPESC

August 2, 2022

Outline

Project Introduction Project Objectives Design Constraints **Project Outcomes** Lessons Learned Q&A

- Former Hartwell Golf Course Opened in Mid-1930's
- Hartwell, Cincinnati, Ohio
- Congress Run just
 upstream from Mill Creek
- 3.82 Sq. Mi. Drainage
- 530 lf 10.5' Span x 7.5' High Metal Arch Culvert
- FEMA Flood Zone AE

- Flood Mitigation Project
- 2 Phase Construction
 - Phase 1 Stream Diversion
 - Phase 2 Culvert Daylighting & Stream Restoration
- Culvert < 2 Yr. Design Flood Capacity
- Backwater Influence from Mill Creek – 115 Sq. Mi. at Congress Run (10,940 cfs)

STREAM MITIGATION TABLE									
STREAM	DRAINAGE AREA (AT UPSTREAM END OF EX. CULVERT)	EXISTING CULVERT LENGTH	TOTAL EXISTING STREAM & CULVERT LENGTH	PROPOSED RESTORATION LENGTH	BANKFULL WIDTH				
CONGRESS RUN	3.82 SQ. MILES	530 LF	689 LF	800 LF	28.25 FT				

	CHAN	NEL EXCAV	ATION TABLE		
STREAM	DRAINAGE AREA (AT UPSTREAM END OF EX. CULVERT)	EXISTING CULVERT FLOW CAPACITY	EXISTING CULVERT FLOW CAPACITY STORM EQUIVALENT	DIVERSION CHANNEL FLOW CAPACITY	TOTAL CAPACITY (CULVERT & DIVERSION)
CONGRESS RUN	3.82 SQ. MILES	470 CFS	<2-YEAR STORM (2.75° RAIN EVENT)	210 CFS (1.8" RAIN EVENT)	680 CFS (>2-YEA STORM, 2.9" RAIN EVENT)

Design Objectives

- Flood Mitigation
- Floodplain Connection
- Ecosystem Restoration
- Hydraulic & Ecological Diversity

Design Constraints

- Impaired & Flashy Urban Stream
- Undersized Culvert
- Backwater from Mill Creek
- High Voltage Electric Transmission Lines
- 30" Sanitary Sewer & Manholes
- Storm Sewer Outfalls
- USGS Stream Gauge
- 2 Permitting Jurisdictions

Design Constraints

Design Constraints

 Significant Flood Reduction from the Base Flood (1% AC)

Location	Profile	Flow (cfs)	WSE (ft)	∆ (ft)
Culvert Inlet	EC 1% AC	4,398	522.9	
Culvert Inlet	PC 1% AC	4,398	516.0	-6.9
Culvert Inlet	EC 1% AC w/ Backwater	4,398	522.9	
Culvert Inlet	PC 1% AC w/ Backwater	4,398	520.3	-2.6

• Stream Diversity

Lessons Learned

- Water Control in Urban Systems
 - Mother Nature Wins!
 - Add more downtime in schedule for flooded conditions

- 1930's Civil Works
 - Mass Concrete
 - 3 Phase Culvert Install = Buried Inlet/Outlet Structures

Questions?

CONNECT WITH US!

www.cecinc.com

CEC UAS Flight Services

