Innovative Grade Controls for Restoring an Incised Urban Channel at Millbrook Exchange Park, Raleigh, NC

Barbara A. Doll^{1,2}, Jonathan Page³, Kevin Boyer⁴, Heather Dutra⁴, Dan Line¹, Cameron Jernigan⁵, Jack Kurki-Fox¹

¹Department of Biological and Agricultural Engineering, NCSU ²NC Sea Grant ²River Mechanics, PLLC ⁴City or Raleigh, Raleigh, North Carolina ⁵McAdams

NC STATE UNIVERSITY

Pre-Restoration Condition

Project Goals & Objectives

- Arrest channel incision and erosion
- Improve floodplain connection
- Improve water quality
- Minimize cost
- Minimize urban forest disturbance

Tributary to Perry Creek, Neuse River Basin

Reach Length = 870 ft

Impairments: 303(d) and TMDL (2010)

Drainage Area = 122 acres

Developed = 91%

Impervious = 11%

Pre-Restoration Monitoring (Upstream & Downstream)

- Discharge
- Total Solids (TS) & Total Suspended Solids (TSS)
- Bedload Trap (Upstream)
- Rainfall

Regenerative Stormwater Conveyance (RSC)

Millbrook Exchange Park Alternative Designs - Cost Summary

Item Category	Grade Control	Priority 1	Priority 2	RSC
Mobilization, Site Preparation & Demo	\$66,306	\$157,011	\$205 <i>,</i> 786	\$112,221
E&SC	\$8,475	\$27 <i>,</i> 990	\$32,475	\$10,875
Earthwork	\$8,400	\$364,000	\$917,000	\$189,700
Structures	\$43 <i>,</i> 455	\$69,100	\$52 <i>,</i> 500	\$98 <i>,</i> 620
Stabilization	\$14,800	\$32,425	\$33 <i>,</i> 950	\$19,150
Site Cleanup	\$4,400	\$4,400	\$4,400	\$4,400
Total =	\$145,836	\$654 <i>,</i> 926	\$1,246,111	\$434,966
Cost Per Linear Foot =	\$217	\$701	\$1,291	\$680
Cost Per Structure =	\$13,258	-	-	\$28,998

11 Grade Control Structures 2-6 feet in height and spaced 40-60 feet apart

Construction Completed January, 2019

GRADE CONTROL STRUCTURE

NOT TO SCALE

Sediment Discharge Relationships

Estimate Channel Filling

Event	Bedload (CY)	Bedload (tons)
Q100%	151	211
Q50%	273	382
Q20%	485	679

- Structures created 935 CY or 1,309 tons of storage capacity for sediment (AutoCAD)
- Channel will fill in 3-5 years

	Q 100%	Q 50%	Q 20%	Incr. Vol. (CY)	Cum. Vol. (CY)
Year 1	Х			151	151
Year 2	Х	Х		424	575
Year 3	Х			151	726
Year 4	Х	Х		424	1150
Year 5	Х		Х	636	1786

Post Construction Monitoring - March 2019 to December 2020

- Rainfall
- Upstream/Downstream Flow & Water Quality
 - Discharge
 - Total solids (TS)
 - Total suspended solids (TSS)
- Morphology (13 Surveys)
 - 11 permanent cross section
 - Longitudinal profile

Post Construction Monitoring – Water Quality

Post Construction Monitoring

338

336

Cross Section 1

3/22/2018

4/23/2019

Post Construction Monitoring

- 42 tons sediment aggraded per year
- Estimated 21 years to fill the channel

Problems/Concerns

- Channel Not aggrading as Fast as Anticipated
- Structure Arms Undermined

Hydraulic modeling – HEC-RAS2D

HEC-RAS2D Model simulations

Simulated discharges (Design from Hydraflow – TR55)

Storm Event	Discharge
1-year	30 cfs
2 year	60 cfs
5 year	107 cfs
25 year	200 cfs
100 year	300 cfs

Observed flow events

Peak Flow Magnitude	Flow (cfs)	Number of Events
1-yr	27-35	5
1-2 year	38-45	3
2-yr	55	1
2-5 yr	85	1
>5 yr	>100	0

2D hydraulic models

- Gives good idea of velocity in channel and water depth
 - BUT-

- Assumed constant velocity with depth
- Not well suited for large elevations changes energy loss and turbulence

FLOW-3D HYDRO

Flow Recirculation (2-yr)

Not an actual event hydrograph but provides illustration of recirculating hydraulics

Other Concerns

- Grade control structures did not adequately connect the channel to the floodplain
- Q > 25-yr flow still confined to channel
- Very high velocity and shear

Lessons Learned / Recommendations

- Use 2D and 3D models to evaluate shear and velocity of grade control designs
 - Model results seem to explain observed erosion/deposition
- Improve floodplain connection
 - Minimize velocity and recirculation
- Consider an alternate design approach
 - Priority 2/3 stream restoration with steppool channel
 - RSC
 - Stage 0 Channel
- Use Experienced Contractor!!!!

