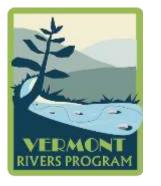
The Vermont Functioning Floodplain Initiative (FFI)

Restoring floodplain function

in Vermont's Lake Champlain Basin

August 2, 2022


https://dec.vermont.gov/rivers/ffi

Project Team

Government

AGENCY OF NATURAL RESOURCES Department of Environmental Conservation

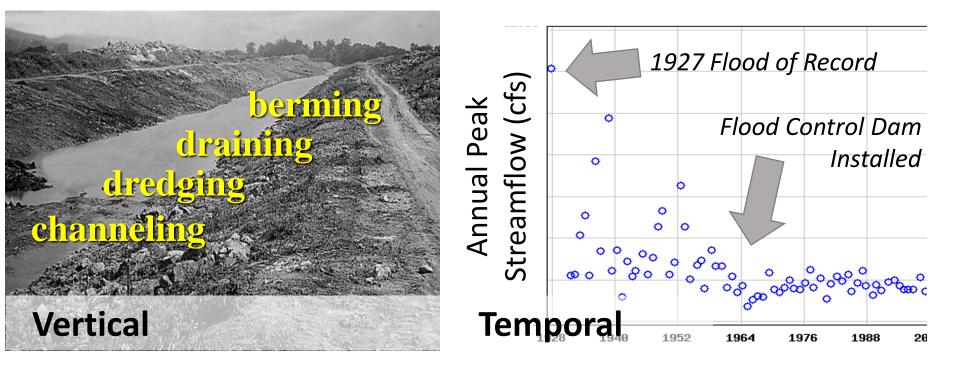
Consultants

STONE ENVIRONMENTAL

Fitzgerald Environmental Associates, LLC

South Mountain Research & Consulting

Non-Profit

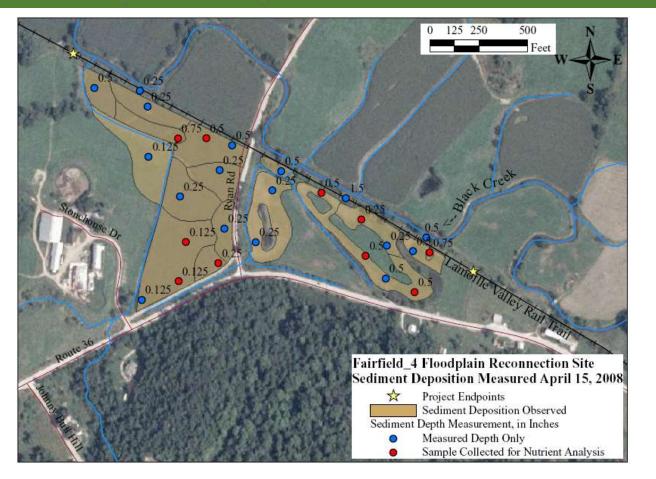

Academia

Historic land uses have disconnected rivers and floodplains

Disconnection has increased sediment/nutrient export

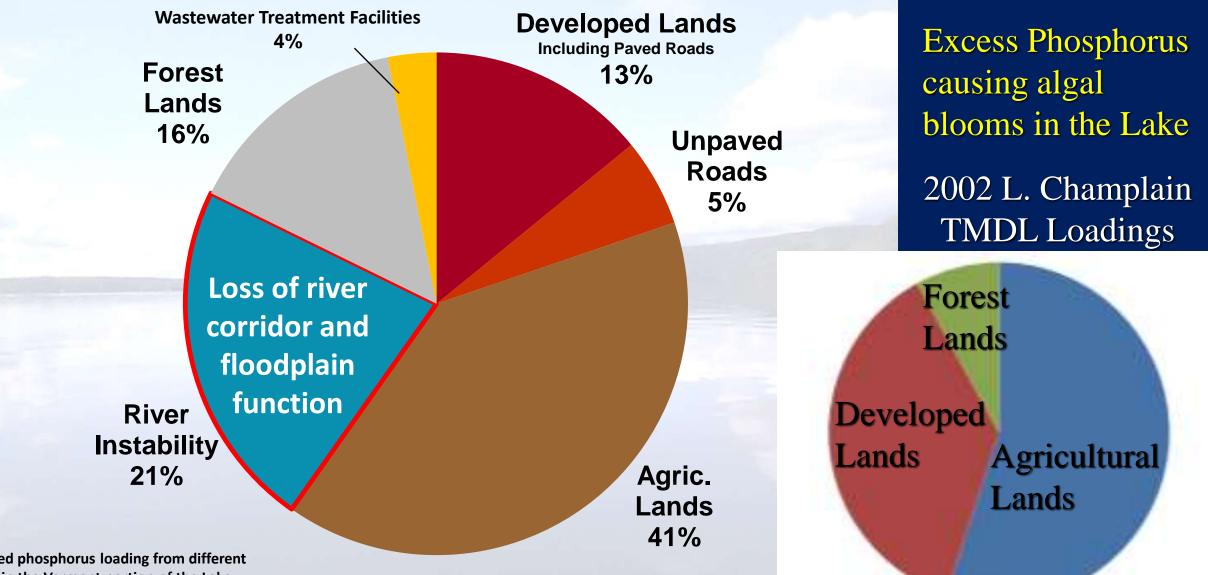
Mansfield Heliflight

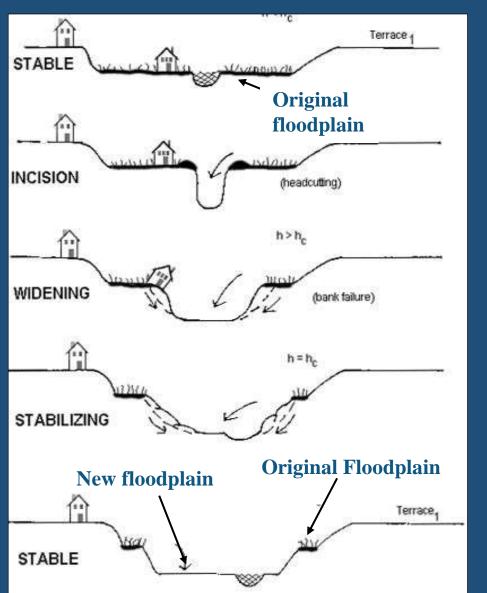
Early Floodplain Reconnection Example


Reconnecting the Black Creek Floodplain Along the Lamoille Valley Rail Trail in 2007

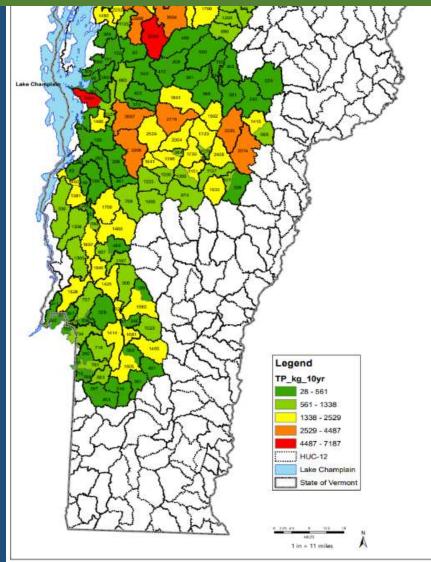
Railroad Embankment Disconnecting Floodplain

Lowered Railroad Embankment to Connect Floodplain


Early Floodplain Reconnection Example


(MMI, 2008)

Lake Champlain TMDL



Estimated phosphorus loading from different sources in the Vermont portion of the Lake Champlain watershed

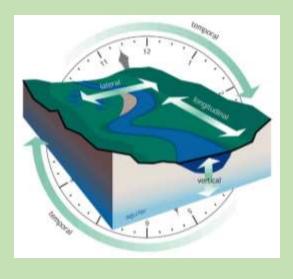
The TMDL quantifies P loading from unstable streams

....and assigns an
allocation to each
Lake Champlain
watershed based
on stage of
evolution toward
floodplain function.

Lake Champlain Sub-basin phosphorus load allocations (Source: VTANR).

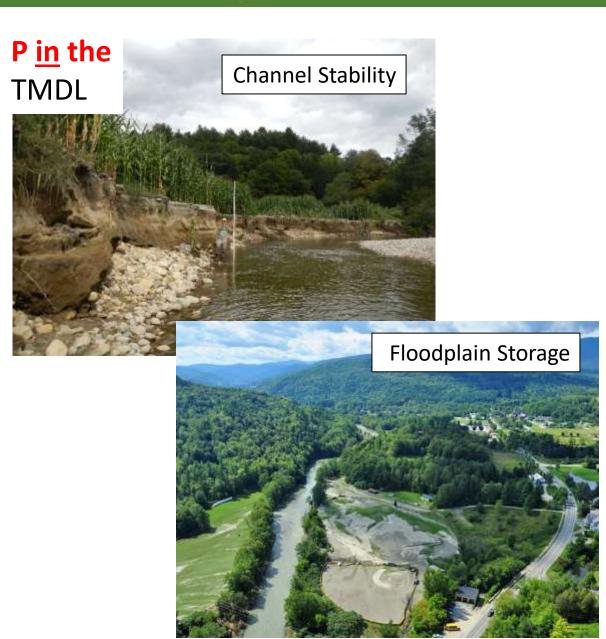
Vermont's Functioning Floodplain Initiative

Analysis of Connectivity Departure GOAL: To achieve the highest water quality, Opportunity **Tracking and** flood resilience, and ecological integrity possible Reporting Analysis when streams and rivers: • frequently and freely flow into floodplains and wetlands; • meander within naturally-vegetated river corridors with space to achieve the river's minimally erosive pattern and dimensions; Valuation of • flow with minimal human diversion, Project Ecosystem obstruction, and stormwater runoff; and Implementation Function • freely exchange with groundwater.


> Project Prioritization

Floodplain Reconnection Projects

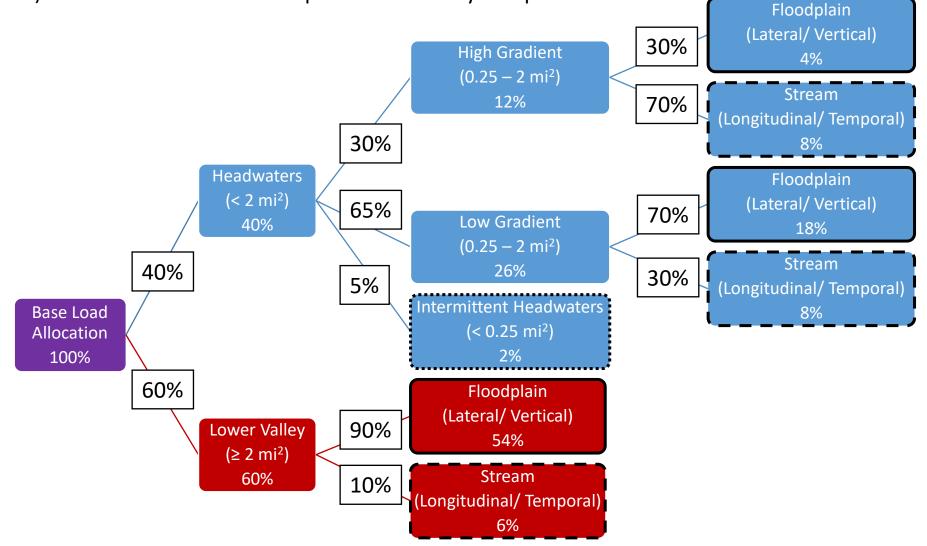
	APPROACH	PROJECT		
	No Action	No Action		
Lateral –		Lower floodplain ^a		
		Reconnect flood chute ^b		
Vertical	Destans	Create flood bench ^c		
	Restore	Restore channel slope and pattern ^d		
Reconnection	Connectivity	Restore channel roughness ^e		
	Connectivity	Raise channel ^f		
		Remove berm ^g		
A THE TRANSPORT		Restore wetland ^h		
	Remove Constraints	Remove major constraint ⁱ		
		Remove minor constraint ^j		
		Implement river corridor easement		
Witten	Protection	Conserve wetlands (e.g., NRCS Wetland Reserve)		
		Adopt river corridor bylaws		
Road	Re-vegetation	Plant woody 50-foot buffer		
		Plant woody river corridor / floodplain		


Stream Reconnection Projects

Longitudinal – Temporal Reconnection

APPROACH	PROJECT			
	Remove Large Flood Control Dam			
	Remove/Convert Large Peaking Hydro Dam			
Remove	Remove Large Run of River (ROR) Dam			
Nemove	Remove/Convert Medium Peaking Hydro Dam			
Dama	Remove Medium ROR Dam			
Dams	Remove Medium Breached Dam			
	Remove Small Intact ROR Dam			
	Remove Small Breached Dam			
	Replace Bridge (Wbkf>100%)			
Doplace	Replace Bridge (50%>Wbkf>100%)			
Replace	Replace Bridge (Wbkf<50%), shallow channel (< 2%)			
	Replace Bridge (Wbkf<50%), steep channel (> 2%)			
Bridges &	Replace Culvert (Wbkf>100%)			
	Replace Culvert (50%>Wbkf>100%), shallow			
Culverts	Replace Culvert (50%>Wbkf>100%), steep			
Curverts	Replace Culvert (Wbkf<50%), shallow			
	Replace Culvert (Wbkf<50%), steep			
	Remove Re-Permit Diversion / Withdrawal			
Mitigate	Remove Groundwater Extraction (commercial, wells)			
iviitigate	Stabilize Headcut in Perennial Streami			
	Stabilize Gully			
Hydrologic	Stabilize Gully w-Treatment of Stormwater			
	Disconnect Municipal or Private Road Ditch			
Alterations	Treat Legacy Forest Trail/Road Drainage			
,	Backwater Culvert with Weir or Other Approach			
	Place Baffles in Culvert			

Lake Champlain TMDL Context


P <u>not in</u> TMDL

Departure Analysis and P Crediting

HUC 12 stream stability allocations are distributed:

- 1) between headwaters and lower valley stream and rivers
- 2) between stream and floodplain connectivity components.

Example #1 - Dog River Floodplain Restoration

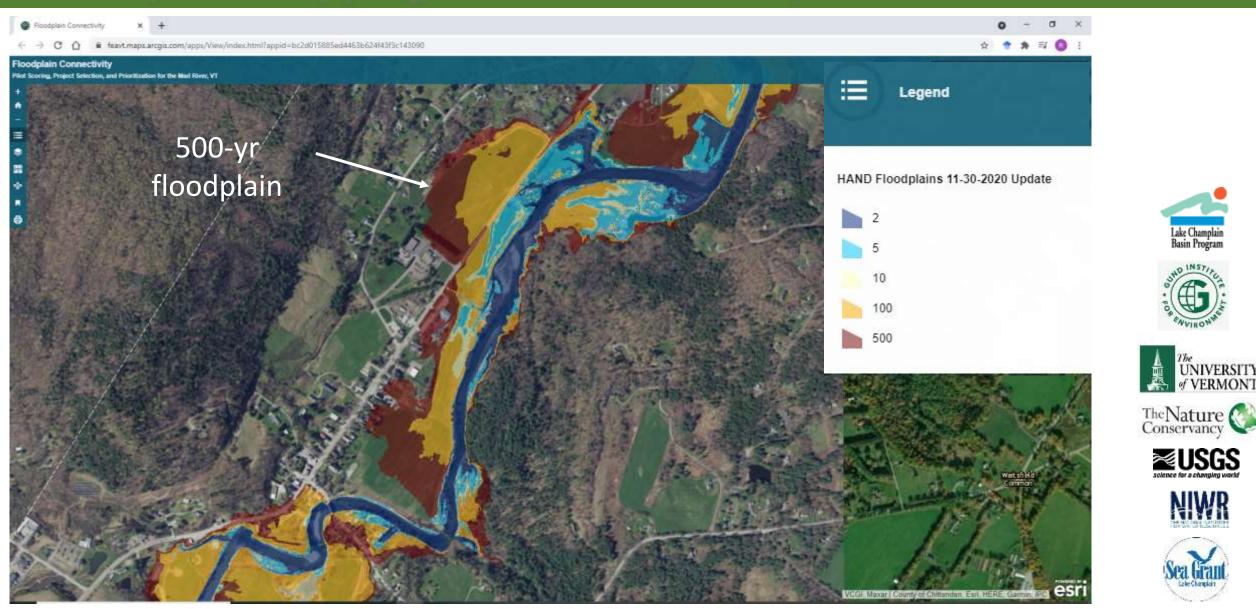
FFI Project Crediting - Floodplain Connectivity 12/20/2021

Project Example

Troject Example		
Project Read		
ID	M13, M12B	
		RC(x)
Area (Acres)	78.6	(acres)
50' Buffer Area (Acres)	24	BFR50
		(acres)
TMDL P Base Load Allocation	(kg/yr)	(lb/yr)
Total Connectivity Allocation	71.2	156.9
Lateral	29.7	65.5
Vertical	41.5	91.4

Proposed Connectivity Credit (Score):	2.4
Proposed Lateral Connectivity Credit (% of EX):	<mark>6</mark> %
Proposed Vertical Connectivity Credit (% of EX):	3%
Lateral P Reduction Credit (kg/yr):	1.8
Vertical P Reduction Credit (kg/yr):	1.3
P Reduction Credit (kg/yr):	3.1
P Reduction Credit (lb/yr):	6.8

Project Description: Berm removal/floodplain lowering reconnecting 3.1 acres of floodplain, with easement, hard constraint removal, and buffer.


Existing			(Acres)	(Acres)	(Acres)	Buffer (Acres)	Incision Ratio
	25	5	30	28.6	15	12	1.9
Project	3.1	3.1	0	0	-3.1	1	1.2
oposed (Post-Project)	28.1	8.1	30	28.6	11.9	13	1.87
0							

FI Project Crediting - P Storage 3/3/2021	(Dog River Floodpl	ain Restoration Exam	ple)		
Project reach, segment or sub	ounit	Estimated TP Stora	nge Credit (lb/yr)		
ID	M13, M12B	Year 1	Year 2+		
Connectivity project	Floodplain restoration	62	31		
Project Area (acres)	3.1				
Existing connectivity in Project Area	Low				
Proposed connectivity in Project Area	High	Default	t TP Storage Credits (II	b/ac/yr)*	
		Low to High	Low to Moderate	Moderate to High	
		20	15	10	
		10	7	5	
		*To be updated by	surements or future r	research.	

FI Project Crediting - Summary 2/20/2021					
Case 5a Project: Lateral/vertical on the same footp	print (Case 2a) + longitudinal/ter	mporal (Case	4)		
Project Name	Dog River Floodplain Restorati	on Project	ESTIMATED PHOSPHO	RUS CREDITING	
River	Dog River and Union Brook				
Town	Northfield, VT				
Location	Water Street			Year 1	Years 2+
Project reach, segment or subunit ID(s)	M13, M12B		Floodplain (lb/yr)	6.8	6.8
Project reach, segment or subunit(s) Area (acres)	78.6		Stream (lb/yr)	0.1	0.1
Connectivity project components	<u>Area (acres)</u>		Storage (lb/yr)	62.0	31.0
Constraint (house) removal	3.1		TOTAL	69.0	38.0
Floodplain lowering / berm removal	3.1				
Buffer planting	3.1				
River Corridor easement	3.1				

- Floodplain credit of 6.8 LB TP/ YR
- Stream credit of 0.1 LB TP / YR
- Storage credit Low to High connectivity; 62 LB TP / YR1; 31 LB TP / YR2+
- \$14,378 / LB TP (Total project cost / annual year 2+ TP credit)

Floodplain Mapping for the Lake Champlain Basin

Diehl, R., J. Gourevitch, S. Drago, B. Wemple, 2021. Improving flood hazard datasets using a low-complexity, probabilistic floodplain mapping approach, PLOS ONE, p1-20.

Lake Champlai Basin Progran

™ UNIVERSITY ∮ VERMONT

NIWR

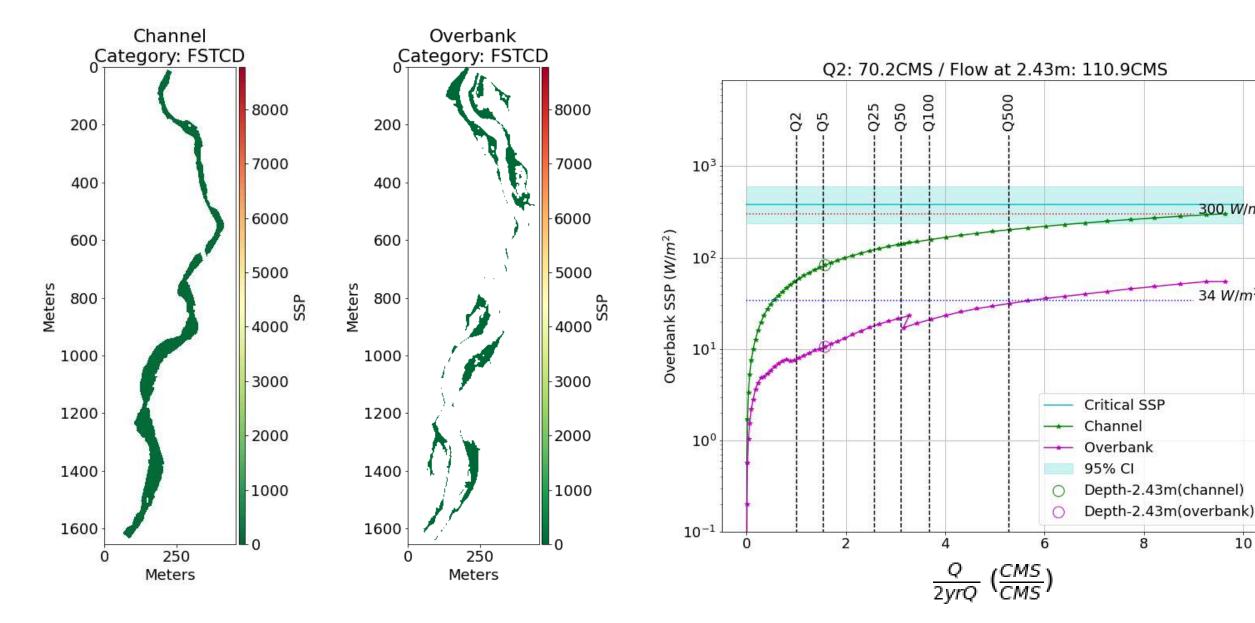
Empirical data set of sediment and P floodplain deposition

+ 170 plots at 24 sites+ Measure event-scale sedimentation

Flood events in 2018 and 2019 captured between 0.2 and 30 lb phosphorus / acre / year.

Water Street Park, Dog River, Northfield

Diehl, R.M., Wemple, B.C., Underwood, K.L., Ross, D. (2021). Evaluating floodplain potential for sediment and phosphorus deposition: Development of a framework to assist in Lake Champlain Basin planning. Lake Champlain Basin Technical Report.

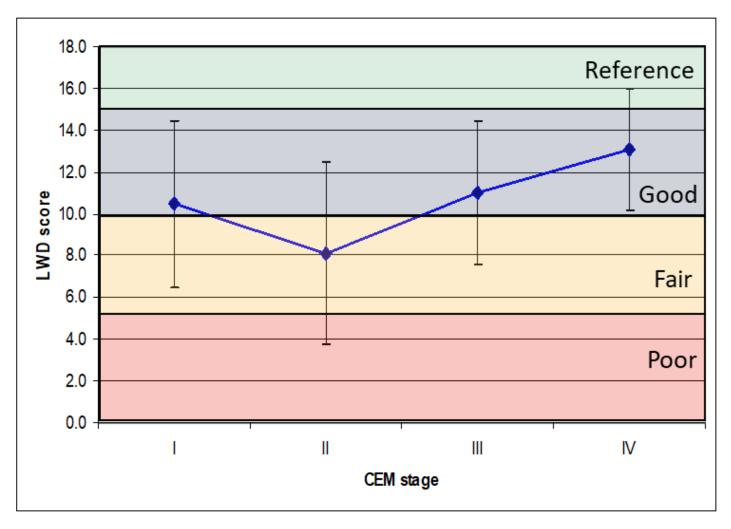

Stream Power v Resistance to Evaluate Erosion Potential

300. W/m2

34 W/m²

10

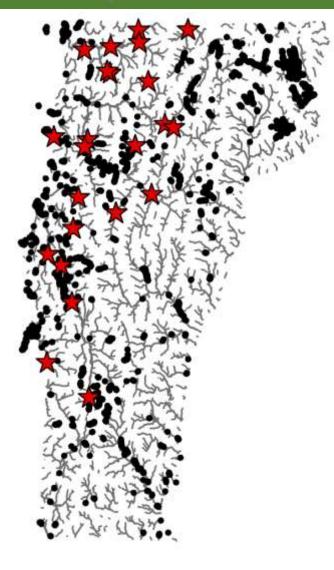
8

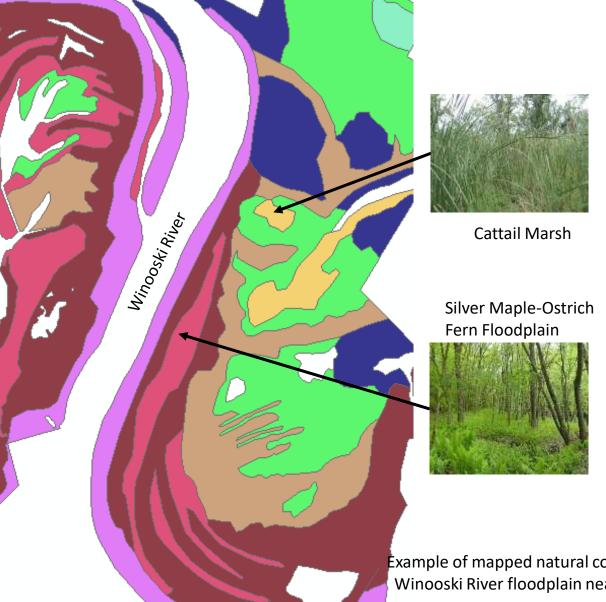

Habitat

Understanding Floodplain Function/Connectivity through the Lens of Habitat

- Three scales:
 - In-channel
 - Near-bank riparian area
 - Floodplain and upland connections

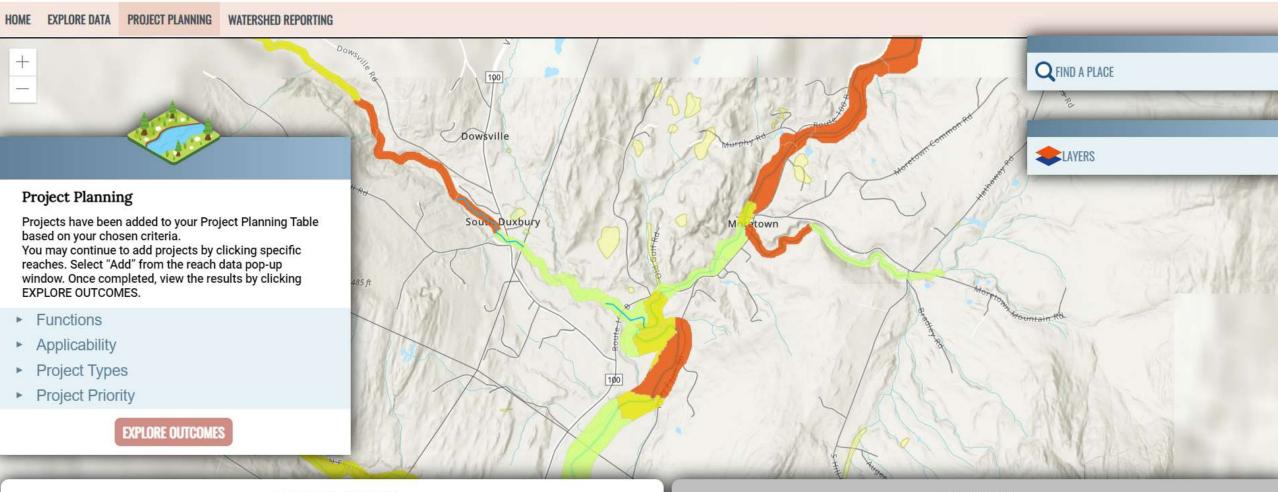
Instream Habitat




CEM Stage II

- Incised condition
- Increased power
- Reduced LWD retention

Floodplain Habitat



Example of mapped natural communities on the Winooski River floodplain near Lake Champlain

Treatment Cost-Effectiveness

Projcet Class	Project Type	Practice	Cost-Effectiveness (\$USD/lb TP/yr)
Natural Resource / Re-Connection Project	Floodplain Restoration	Berm Removal	\$ 2,050
Natural Resource / Re-Connection Project	Buffers	Buffers	\$ 2,786
Natural Resource / Re-Connection Project	Corridor easement	Corridor easement	\$ 5,944
Natural Resource / Re-Connection Project	Floodplain Restoration	Create Flood Bench	\$ 12,351
Stormwater Best Management Practice	Infiltration Practices	Surface Infiltration	\$ 12,500
Natural Resource / Re-Connection Project	Dam removal	Medium ROR Dam	\$ 13,438
Natural Resource / Re-Connection Project	Floodplain Restoration	Lower Floodplain	\$ 14,017
Stormwater Best Management Practice	Infiltration Practices	Subsurface Infiltration	\$ 15,000
Stormwater Best Management Practice	Infiltration Practices	Infiltration Trench	\$ 15,000
Natural Resource / Re-Connection Project	Floodplain Restoration	Raise Channel	\$ 16,224
Stormwater Best Management Practice	Infiltration Practices	Rain Garden (no underdrain)	\$ 17,500
Natural Resource / Re-Connection Project	Dam removal	Medium Breached Dam	\$ 19,814
Natural Resource / Re-Connection Project	Dam removal	Small ROR Dam	\$ 20,519
Stormwater Best Management Practice	Filtering Practices	Constructed Wetlands	\$ 30,000
Stormwater Best Management Practice	Ponds	Wet Pond	\$ 30,000
Stormwater Best Management Practice	Filtering Practices	Gravel Wetland	\$ 35,000
Stormwater Best Management Practice	Filtering Practices	Rain Garden (with underdrain)	\$ 40,000
Stormwater Best Management Practice	Filtering Practices	Sand Filter	\$ 52,500
Stormwater Best Management Practice	Filtering Practices	Grass Conveyance Swale	\$ 60,000
Stormwater Best Management Practice	Ponds	Extended Dry Detention Pond	\$ 135,000

Web Application – Project Planning

PROJECT PLANNING TABLE

OUTCOME TABLE

Web Application – Project Planning

Total Phosphorus Credit for Stream Stability and Storage

 SubUnit(s) IDs:
 36_M12-_3_C00, 36_T7.01_1_C00, 36_M12

 Town:
 Waitsfield

 Projects Included:
 River corridor easment, riparian buffer planting, floodplain planting, culvert replacement

Stream Stability and Storage Credit Summary

	Year 1 Credit (kg/yr)	Years 2+ Credit (kg/yr)	Estimated 15-yr Lifespan Credit (kg/yr)
Floodplain Connectivi	ty (Lateral-Vertical)		
Stream Stability	6.84	4 6.84	102.65
Storage	62.0	31.00	465.00
Stream Connectivity (I	ongitudinal-Tempora)	
Stream Stability	0.1	3 0.13	1.92
TOTAL	68.9	7 37.97	569.58

Web Application – User Groups

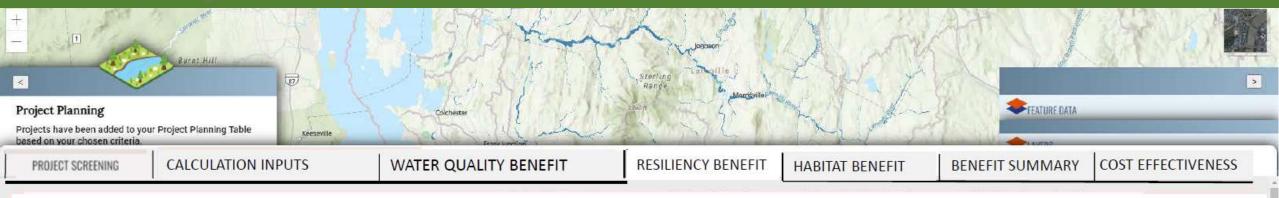
- VTDEC River Scientist/Clean Water Initiative Analysts focused on river and floodplain restoration will track progress towards achieving TMDL to improve water quality.
- VTrans Planner focused on the transportation network will identify resiliency projects along roads that also have water quality and habitat co-benefits.

Thank You

Source: Lars Gange & <u>Mansfield Heliflight</u>, August 31, 2011

Extra Slides

FFI Project Crediting - Stream Conn	nectivity			1			· · · · · ·						
0/18/2021				Project Description:	<i>.</i>		+						
,,			j		TEMP Structure and		i i		+				
		4	J						1	1			
		4	Web Map Variable Name:		TEMP IR Deduction +	0	/- TEMPexisting-ag %	IR	1	1			
		4	Web iviap variable ivanie.	Longitudinal	Temporal	n rds	TEIVIPEXISting-ag /0		· - []	+			
	Ţ		J	Deductions	Deductions	HUC12 roads/dev	HUC12 ag LU/DA	Incision Ratio	1	1			
Project reach, segment or su	cubunit		J	(Structures and IR)			(%)_Tile	Incision Ratio	1	1		Col	olumr 👻
ID			Existing		-60	5	50	1.9	'	1			
	M13, WIZD	+		U	-60 0	0	50	1.9	4'	+		yes	
	,]		Project	R 0.8	0.3			1.2	4'	+	_	no	
TMDL P Base Load Allocation	(kg/yr)	(lb/yr)	Proposed (Post-Project)		-59.7	5.00	50.00	1.2	'	+			
TIVIDE P Dase Loau Anotation	(кg/уг)	(10/91)	Proposed (Post-Project) Maximum Values in Basin	·	-59.7	5.00	108.6	1.2	4'	+			
Stream	5.21	11.49		t'	·'	1.1	100.0	4	'	+			
Stream	5.21	11.45		t′	1	'	Will the project c'	disconnact tile drain	s or ditches in an agricu		ng? no		
	·]	+		t	+'	'	Will the project all	SCONNELL LITE UNUINS	Land Use Chang	-	-		
	·]	+		t′	· [· · · · · · · · · · · · · · · · · ·	'		-	Ldilu Use Chang	Je Alea (Auco	.) 0.0		
	،ا			· ['	· '	· - [+	Is the incision ra		ig? yes		
]			t′	Temporal	Temporal Roads		+	IS the moston	(10 Chunging).	7 yes		
	r I		ļ	Longitudinal Score					1	Longitudinal	Tomporal		
Corridor Area for Segment/Reach (acres)	78.6		Existing		e Deductions Score 40.0	Score 35.1	Temporal Ag Score 54.0				al Temporal -8.0		
Corridor Area for Segment/Reach (acres) Area (Acres) with Vertical Change	78.6	4		0	40.0 40.3	35.1 35.1	54.0 54.0		Existing IR deduction Proposed IR deduction		-8.0		
		4	Proposed (Post-Project)	60.8	40.3	35.1	54.0				-7.7		
Percent Area with Vertical Change	3.9%	4			I	I		Alea vva	Weighted IR deduction		-7.7		
	,J			·'	· [· · · · · · · · · · · · · · · · · ·	· '		-	Change in score	0.8	0.3		
	J	+		t'	Longitudinal	Temporal	Stream	+	'	+			
	·]		Existin	g Connectivity Score:		42.7	53.09	1		1			
	I			nnectivity Departure:		57.3	46.9	1					
	I			ed Connectivity Score:		42.9	53.61	1		Incision			
	I		-	nnectivity Departure:		57.1	46.4	1	Incision	Ratio ¹	Longitudinal Score Deducti	-	al Score Deduction
	I					ectivity Credit (Score):		1		IR < 1.3 1.3 ≤ IR < 1.5	-10	1	-5
	r]					tivity Credit (% of EX):	·	1		$1.3 \le IR < 1.5$ 1.5 < IR < 2.0	-10		-3
	r]					tivity P Credit (kg/yr):		1		$IR \ge 2.0$	-30		-10
4	J		<u>}</u>			ctivity P Credit (lb/yr):	·	1					
	,I			t'		VILY " CIEUIL (10, 51).	0.120	4		+			

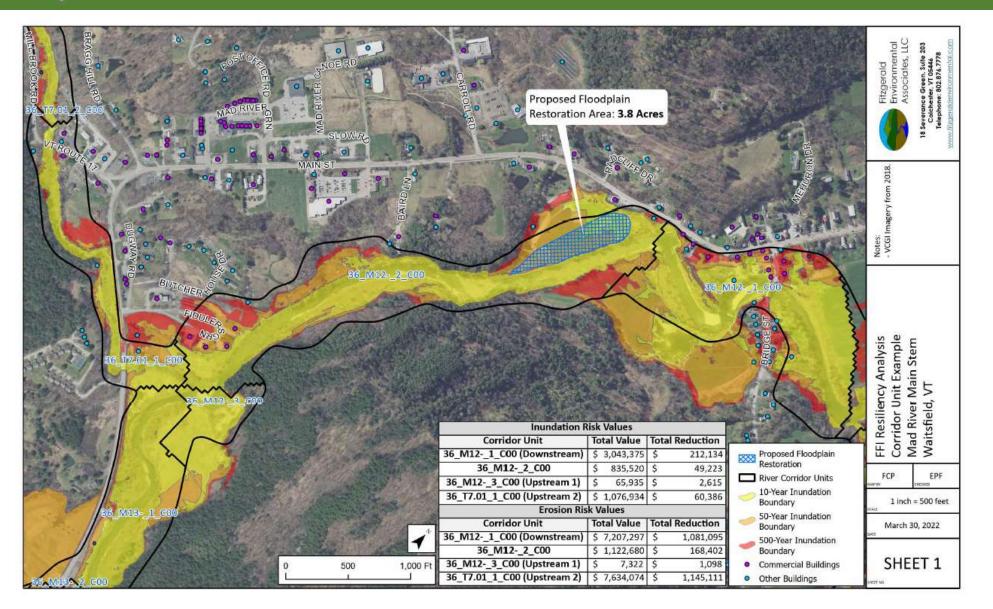

Simulated P Crediting

Simulated Project	Median P Reduction Credit	P Credit Units
Floodplain Restoration with buffer revegetation	1.6	lb/ac/yr
Floodplain Restoration with buffer revegetation and easement	2.1	lb/ac/yr
Large/medium dam removal with floodplain restoration	2.0	lb/ac/yr
Small/medium intact ROR or breached dam removal with floodplain restoration	2.1	lb/ac/yr
Wood addition in 1st and 2nd order streams with vertical reconnection	1.7	lb/ac/yr
Wood addition in 3rd and 4th order streams with vertical reconnection	0.6	lb/ac/yr
Remove hard constraint	1.1	lb/ac/yr
Passive restoration - easement and buffer revegetation	0.8	lb/ac/yr
Adopt corridor bylaws	0.2	lb/ac/yr
Buffer revegetation	0.6	lb/ac/yr
Replace culverts - undersized with shallow slope	2.0	lb/culvert/yr
Stabilize gully on perennial stream	2.6	lb/project/yr

Treatment Cost-Effectiveness

			Stormwater BMP Cost Comparison to Natrual Resource Projects (Stormwater \$US/lb TP - NR \$US/lb TP)																						
					Infiltration Practices										-	ng Practico						Ponds			
																								E	xtended
										Rai	n Garden						Grass	Rai	n Garden						Dry
NR Project		NR Pr	ractice Cost	Su	irface	Sub	osurface	Inf	iltration		(no		Gravel	Со	nstructed	Cor	nveyance		(with					D	etention
Туре	NR Practice	(\$US/	/lb TP)	Infil	tration	Infi	iltration	-	Trench	uno	derdrain)	V	/etland	V	Vetlands		Swale	un	derdrain)	Sa	nd Filter	N	/et Pond		Pond
	Berm Removal	\$	2,050	Ś	10,450	Ś	12,950	¢	12,950	Ś	15,450	Ś	32,950	¢	27,950	Ś	57,950	¢	37,950	4	50,450	Ś	27,950	¢	132,950
			2,030	Ļ	10,450	Ŷ	12,330	Ţ	12,550	Ţ	13,430	7	52,550		27,550	Ţ	57,550	7	57,550	<u> </u>	50,450	, , , , , , , , , , , , , , , , , , ,	21,550	7	132,330
Floodplain	Lower Floodplain	\$	14,019	-\$	1,517	\$	983	\$	983	\$	3,483	\$	20,983	\$	15,983	\$	45,983	\$	25,983	\$	38,483	\$	15,983	\$	120,983
Restoration	Raise Channel	\$	16,455	-\$	3,724	-\$	1,224	-\$	1,224	\$	1,276	\$	18,776	\$	13,776	\$	43,776	\$	23,776	\$	36,276	\$	13,776	\$	118,776
	Create Flood Bench	\$	12,351	\$	149	\$	2,649	\$	2,649	\$	5,149	\$	22,649	\$	17,649	\$	47,649	\$	27,649	\$	40,149	\$	17,649	\$	122,649
	Small ROR Dam	\$	20,519	-\$	8,019	-\$	5,519	-\$	5,519	-\$	3,019	\$	14,481	\$	9,481	\$	39,481	\$	19,481	\$	31,981	\$	9,481	\$	114,481
Dam removal	Medium ROR Dam	\$	13,438	-\$	938	\$	1,562	\$	1,562	\$	4,062	\$	21,562	\$	16,562	\$	46,562	\$	26,562	\$	39,062	\$	16,562	\$	121,562
	Medium Breached Dam	\$	19,892	-\$	7,314	-\$	4,814	-\$	4,814	-\$	2,314	\$	15,186	\$	10,186	\$	40,186	\$	20,186	\$	32,686	\$	10,186	\$	115,186
	Buffers	\$	2,786	\$	9,714	\$	12,214	\$	12,214	\$	14,714	\$	32,214	\$	27,214	\$	57,214	\$	37,214	\$	49,714	\$	27,214	\$	132,214
Corri	idor easement	\$	8,321	\$	6,556	\$	9,056	\$	9,056	\$	11,556	\$	29,056	\$	24,056	\$	54,056	\$	34,056	\$	46,556	\$	24,056	\$	129,056

Resiliency



Predicted Resiliency Benefit

	Inund	latior	n Risk Exposu	ire and	Potential Bener	fit						
Location	Corridor Unit		Building Value		ortation Value	Agriculture Value			otal Value	Potential Benefit		
Downstream	36_M121_C00	\$	3,575,383	\$	192,443	\$	33,924	\$	3,801,750	\$	321,282	
Local	36_M122_C00	\$	724,795	\$	92,697	\$	9,268	\$	826,759	\$	48,872	
Upstream 1	36_M123_C00	\$	E.	\$	-	\$	12,319	\$	12,319	\$	471	
Further Upstream 2	36_T7.01_1_C00	\$	861,189	\$	275,239	\$	5,537	\$	1,141,965	\$	62,987	
Project Totals	n/a	\$	5,161,366	\$	560,379	\$	61,048	\$	5,782,794	\$	433,612	

		Ero	sion Risk Exposure	and Po	tential Benefit							
Location	Corridor Unit		Building Value	Transportation Value		Agriculture Value		Total Value		Potential Benefi		
Downstream	36_M121_C00	\$	4,042,918	\$	3,148,225	\$	16,154	\$	7,207,297	\$	1,081,095	
Local	36_M122_C00	\$	1,011,699	\$	99,550	\$	11,431	\$	1,122,680	\$	168,402	
Upstream 1	36_M123_C00	\$	-	\$	2	\$	7,233	\$	7,233	\$	1,085	
Further Upstream 2	36_T7.01_1_C00	\$	1,082,609	\$	6,548,812	\$	2,654	\$	7,634,074	\$	1,145,111	
Project Totals	n/a	\$	6,137,226	\$	9,796,588	\$	37,472	\$	15,971,285	\$	2,395,693	

Resiliency

