

Cumulative Effects of Multiple Stream Restoration Projects on Flood Attenuation and Nitrate Removal at the Watershed Scale

ERICH HESTER, MICHAEL CALFE, CARLY FEDERMAN, LUKE GOODMAN, AND DURELLE SCOTT AUGUST 1, 2022

01 Background

Sources: Montgomery County MD, Fairfax County VA

Research Motivation

Sources: Virginia Dept. of Health, Weather.gov

Eutrophication and Flooding

- Land use change (agriculture, urbanization), and climate change leads to
- Increased eutrophication leading to harmful algal blooms and "dead zones"
- Increased flooding

Research Motivation

Sources: USEPA, Montgomery County MD DEP, King County WA

Stream Restoration as a Solution

- Stream restoration for nitrate reduction
 - Channel restoration for hyporheic enhancement
 - Floodplain exchange enhancement (bankfull floodplain restoration, Stage 0 restoration)
- Stream restoration for flood attenuation
 - Floodplain exchange enhancement (bankfull floodplain restoration, Stage 0 restoration)
- Stage 0 implemented by raising streambed (RSB) and/or legacy

sediment removal (LSR)

Research Motivation

Source: Maryland Trust Fund Restoration Mapper

State of Practice and Knowledge Gaps

- Insufficient knowledge of
 - Variation in project effects with location within watershed
 - Cumulative effects at watershed scale
 - Effect of Stage 0 restoration

Current Modeling Projects

A. Effects of channel restoration for
hyporheic enhancement on nitrate
removal at watershed scale

 B. Effects of floodplain exchange enhancement on flood attenuation at stream segment scale

Sources: USEPA, Montgomery County MD DEP, King County WA

Stream Order	Number of Channels	Representative drainage area (DA) [km²]	Bankfull Width (W) [m]	Bankfull Mean Depth (D) [m]	Bankfull Slope (S) [m/m]	Model Stream Length (L) [m]
1	24	1.8	3.4	0.2	0.0066	1,830
2	6	9.7	7.0	0.5	0.0043	5,030
3	2	47	13.7	0.8	0.0029	12,800
4	1	202	25.6	1.4	0.0020	30,790

HEC-RAS Model Geometry

- Generic model for Piedmont physiographic province
- Strahler ordering
 - Bifurcation ratio
 - 4:1 1st Order to 2nd Order
 - 3:1 2nd Order to 3rd Order
 - 2:1 3rd Order to 4th Order
- Drainage basin area
 - o USEPA NHDPlus
- Horton laws
 - Regional curves
 - W, D, S based on DA
 - Hack's law
 - L= 1.4DA^{0.6} (*Hack* 1957 for Piedmont

Source: Calfe, M.L., Scott, D.T., Hester, E.T., 2022. Nitrate removal by watershed-scale hyporheic stream estimation:

Modeling approach to estimate effects and patterns at the stream network scale. Ecological Engineering, 175: 106498.

A) Hyporheic Enhancement – Methods

HEC-RAS Model Flow

- Steady, long-term mean baseflow conditions
- Most effective flow conditions for hyporheic denitrification
- All reaches are mildly gaining to honor regional curve flows for each stream order watershed
- Groundwater is widely polluted with 1 mg/L nitrate

Source: Calfe, M.L., Scott, D.T., Hester, E.T., 2022. Nitrate removal by watershed-scale hyporheic stream restoration:

Modeling approach to estimate effects and patterns at the stream network scale. Ecological Engineering, 175: 106498.

A) Hyporheic Enhancement – Methods

Experimental Design

Restoration scenarios:

- L. Restore individual order channels in increments of 10% starting at the top of each reach and working down
- 2. Restore entire watershed

Determine nitrate load reductions at:

- L. Individual stream order outlet(s)
- 2. 4th-order watershed outlet

Determine percent reduction at different outlet locations

Source: Calfe, M.L., Scott, D.T., Hester, E.T., 2022. Nitrate removal by watershed-scale hyporheic stream restoration: Modeling approach to estimate effects and patterns at the stream network scale. *Ecological Engineering*, 175: 106498.

A) Hyporheic Enhancement – Methods

HEC-RAS + R Script to Simulate Hyporheic Exchange and Nitrate Removal

Conceptual model of hyporheic flow around a cross vane in nature (also represents meanders, gravel bars, pool-riffles, etc.)

HEC-RAS/R-Script computational model of hyporheic flow around a cross vane $\mathbf{Q}_{\mathsf{lat}}$

Source: Calfe, Scott, and Hester. Ecological Engineering. 2022.

 Q_1 = Upstream discharge Q_2 = Downstream discharge Q_{lat} = GW upwelling along reach r_h = Percentage of surface water flowing through structure-induced hyporheic zone (0.3%, 0.03%)

- Sediment was sand/gravel with some or considerable fines [Azinheira et al. 2014; Wondzell and Swanson 1996; Gordon et al. 2013]
- Supply-limited denitrification, i.e. all nitrate entering hyporheic zone is denitrified [Hester et al. 2016; Herzog et al. 2016]

Source: Calfe, M.L., Scott, D.T., Hester, E.T., 2022. Nitrate removal by watershed-scale hyporheic stream restoration: Modeling approach to estimate effects and patterns at the stream network scale. *Ecological Engineering*, 175: 106498.

Effect of Percent Restored on Nitrate Reduction

3rd order

 $r_{\rm h} = 0.3\%$

4th order

1st order

2nd order

- Higher order channels more effective at removing nitrogen, both incrementally and cumulatively
- Change in concavity after instances of surface water recycling (incremental effect of individual project changes with amount already restored)

Source: Calfe, M.L., Scott, D.T., Hester, E.T., 2022. Nitrate removal by watershed-scale hyporheic stream restoration:

Modeling approach to estimate effects and patterns at the stream network scale. *Ecological Engineering*, 175: 106498.

100

Effect of Percent Restored on Nitrate Reduction

r_h = 0.3%

→ Full Watershed Restoration

Source: Calfe, M.L., Scott, D.T., Hester, E.T., 2022. Nitrate removal by watershed-scale hyporheic stream restoration: Modeling approach to estimate effects and patterns at the stream network scale. *Ecological Engineering*, 175: 106498.

 $r_{\rm h} = 0.03\%$

Percentage of Stream Length Restored [%]

A) Hyporheic Enhancement – Conclusions

- Location in watershed affects both incremental and cumulative nitrate load reduction from restoration projects (more effective in larger streams)
- Length of channel already restored affects incremental nitrate load reduction from individual projects (different effects in small vs. large streams)
- Removal potential greater in larger streams, but larger streams have less removal rate data and harder to do restoration
- Results emphasize the importance of watershed-scale planning in stream restoration

HEC-RAS Model Geometry

- Modified subset of earlier model as starting point
- Single representative 2nd-order channel
- Simplified floodplain on both banks
- Just hydraulics for now
- Output
 - Flood attenuation (reduced peak flow)
 - Floodplain exchange (relates to N removal)

Decumence Interval	Peak flow at the downstream end of stream (m ³ /s)			
Recurrence interval	1 st -order	2 nd -order		
2-year storm	1.60	5.38		
1-year storm	0.95	3.99		
0.5-year storm	0.76	2.59		
Monthly storm	0.34	0.45		

HEC-RAS Model Flow

- Unsteady flow in 2nd order channel
- Peak flows and hydrographs from Piedmont physiographic province
- Added distributed stormflow (interflow, surface runoff, etc.) to calibrate to 2nd order hydrograph at downstream end

Source: Federman MS thesis, 2021

-				
Deremeter	Range varied in	Increments used for	Base case restoration	
Parameter	sensitivity analysis	sensitivity analysis	value	
Percent of channel length restored	0% - 100%	20%	20%	
Bank height	7.6 cm – 46 cm	7.6 cm	15.2 cm	
Restoration location	Upstream portion (0 m – 1006 m) – Downstream portion (4025 m - 5030 m)	1006 m	Upstream portion (0 m – 1006 m)	
Floodplain Manning's n	0.04 - 0.12	0.02	0.08	
Floodplain width	0 m - 204.2 m	0, 10.42, 107.4, 204.2 m ¹	10.42 m	
ource: Federman MS	thesis, 2021			

Model Sensitivity Analysis

- Varied percent channel length restored (as before)
- Varied design parameters, including bank height, restoration location, floodplain width, floodplain Manning's n
- Bank height range included Stage 0 (<15 cm) and conventional bankfull floodplain restoration (40-50 cm)

Example Output Hydrographs

 Flood attenuation = reduced peak flow rate at downstream end of 2nd order channel for restored conditions

Source: Federman MS thesis, 2021

Effect of Bank Height (Restoration Technique)

- Stage 0 (low banks) more effective than high banks (bankfull floodplain)
- No tradeoff among restoration benefits; lower banks enhances both flood attenuation and floodplain exchange (water quality)

Stage 0 implemented by raising streambed (RSB) and/or legacy sediment removal (LSR)

Effect of Project Location

- Individual projects were more effective if...
- …located upstream along channel (for flood wave attenuation)
- ...downstream along channel (for floodplain exchange)
- Tradeoff between flood attenuation and floodplain exchange

Effect of Percent Restored

- Individual projects were more effective (i.e. greater slope of curve) if...
- ...less prior restoration (for flood wave attenuation)
- ...more prior restoration (for floodplain exchange)
- Tradeoff between flood attenuation and floodplain exchange

floodplain exchange (relates to nitrate removal)

3) Floodplain Exchange Enhancement – Conclusions

- Stage 0 restoration more effective than bankfull floodplain restoration
- Incremental flood attenuation/exchange benefits from individual projects depends on:
 - Length of channel already restored (greater effect on attenuation/exchange when less/more already restored, respectively)
 - Location of restoration along 2nd-order channel (greater effect on attenuation/exchange at upstream/downstream end, respectively)

Next Steps

- **1. Channel restoration for hyporheic enhancement:** Account for spatial variation of exchange, temporal variation of groundwater gaining
- 2. Floodplain exchange enhancement: Scale up to 4th-order watershed, add nitrate transport and removal component

Credits

- Funders: MD DNR, NFWF through US EPA Chesapeake Bay Program Office, Chesapeake Bay Trust, Charles E. Via Jr. Foundation at Virginia Tech
- Data: Natalie Kruse Daniels
- Guidance: Andy Miller, Art Parola, Bill Stack, Dave Goerman, David Wood, Drew Altland, Elizabeth Zinecker, Erik Michelsen, Jeff Hartranft, Jeremy Hanson, Joe Berg, Joe Sweeney, Josh Running, Ken Belt, Lisa Fraley-McNeal, Neely Law, Paul Mayer, Rich Starr, Roderick Lammers, Sean Crawford, Shannon McKenrick, Solange Filoso, Sujay Kaushal, Tammy Newcomer-Johnson, Tom Jordan

